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Abstract. Enabling accurate analysis of social network data while preserving differential privacy has
been challenging since graph features such as cluster coefficient often have high sensitivity, which is
different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we
study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce
differential privacy on graph model parameters learned from the original network and then generate
the graphs for releasing using the graph model with the private parameters. In particular, we develop
a differential privacy preserving graph generator based on the dK-graph generation model. We first
derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph
model, then enforce edge differential privacy on the learned parameters, and finally use the dK-
graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce
the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the
global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller
magnitude noise. We conduct experiments on four real networks and compare the performance
of our private dK-graph models with the stochastic Kronecker graph generation model in terms of
utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation
models significantly outperform the approach based on the stochastic Kronecker generation model.
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1 Introduction

Omnipresent graph databases of various networks, especially social networks, have pro-
vided researchers with unprecedented opportunities to analyze complex social phenom-
ena. While society would like to encourage such scientific endeavors, privacy disclosure,
or the risk of being identified, has attracted more and more attention by users of such
networks. To help guiding public policy to protect individuals’ privacy as well as pro-
moting scientific analysis of social networks, we are faced with the problem of providing
researchers with a fairly precise picture of the quantities or trends of the networks without
disclosing sensitive information about participants of the network.

Graph topologies play an irreplaceable role in the network analysis. Previous research in
security and privacy has shown potential risks for individual identification with the real
graph topologies or the anonymized graph topologies of social networks [1, 2, 3]. Various
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anonymization approaches [4, 5, 6, 7] have been developed to protect privacy. However,
those approaches adopt the idea of pre-processing the raw graph such that each individ-
ual or its sensitive links are hidden within a group of other individuals. They often assume
that adversaries have a particular type of structural background knowledge (e.g., vertex de-
grees, neighborhoods, embedded subgraphs, graph metrics) in their attacks . For example,
Liu and Terzi [4] considered vertex degrees as background knowledge of the adversaries to
breach the privacy of target individuals, the authors of [5, 2] used neighborhood structural
information of some target individuals, the authors of [1, 6] proposed the use of embedded
subgraphs, and Ying and Wu [7] exploited the topological similarity/distance to breach
the link privacy. Hence there is no guarantee to achieve strict privacy protection since they
could not completely prevent adversaries from exploiting various auxiliary information to
breach privacy.

There have been attempts [8, 9, 10, 11] to formalize notions of differential privacy in re-
leasing aggregate information about a statistical database and the mechanism to providing
privacy protection to participants of the databases. Differential privacy [8, 9] is a paradigm
of post-processing the output of queries such that the inclusion or exclusion of a single in-
dividual from the data set make no statistical difference to the results found. Differential
privacy provides formal privacy guarantees that do not depend on an adversary’s back-
ground knowledge (including access to other databases) or computational power. One
classic method to achieve differential privacy is to directly add calibrated laplace noise
on the output of the computation. The calibrating process includes the calculation of the
global sensitivity of the computation that bounds the possible change in the computation
output over any two neighboring databases, and adds a random noise generated from a
Laplace distribution with the scale parameter determined by the global sensitivity and the
specified privacy threshold. This approach works well for traditional aggregate functions
(often with low sensitivity values) over tabular data.

In the context of privacy for graphs, the authors in [12] introduced 1) edge differential
privacy where two neighboring graphs differ at most one edge, 2) k-edge-differential pri-
vacy where two neighboring graphs can differ at most k edges, and 3) node differential
privacy where two neighboring graphs can differ up to all edges connected to one single
node. Node differential privacy assures more privacy concerns as a node differentially pri-
vate algorithm behaves almost as if an individual did not appear in the released graph at
all. While node-differential privacy is a desirable objective, it may be infeasible to design
algorithms that both achieve node privacy guarantee and enable accurate graph analysis.
For example, it was shown in [12] that graph analysis is highly inaccurate under node-
differential privacy or k-edge differential privacy (when k is large) due to large calibrated
noise in order to achieve privacy guarantee. Throughout this paper, we focus on edge dif-
ferential privacy. Our motivation is to protect sensitive relationships between individuals
in sharing social graph topology, where providing edge privacy would address a number
of practical privacy attacks [1].

There have been attempts to enforce differential privacy on graph data, e.g., computing
graph properties such as degree distributions [12], clustering coefficient [13, 14], and eigen-
values/eigenvectors [15] in social network analysis. However, it is very challenging to
directly enforce differential privacy in computing graph properties (e.g., clustering coeffi-
cient) due to their high sensitivity. Recently, attempts [16, 17] have been made in enforcing
edge differential privacy in graph generation. The idea is to enforce edge differential pri-
vacy on graph model parameters learned from the original network and then generate
the graphs for releasing using the graph model with the private parameters. The released
graphs then can be used for various analysis. The authors in [16] tried to generate differen-
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tially private graph topology with the stochastic Kronecker graph generation model [18].
However, the stochastic Kronecker graph generation model often cannot accurately capture
graph properties of real social networks due to its simplicity in the generation process. The
authors in [17] developed a private dK-graph model to enforce edge differential privacy.
The dK-graph model [19], which constructs graphs to satisfy a family of properties based
on various types of node degree correlations, has been shown an effective graph generation
model. However, the private 2K-graph model proposed in [17] was based on the local sen-
sitivity of degree correlations due to the large global sensitivity. As shown in [11], the noise
magnitude based on the local sensitivity reveals information about the data. As a result,
the model in [17] could not achieve rigorous differential privacy protection. In this paper,
we present a private 2K-graph generation model that achieves rigorous edge differential
privacy. Our idea is to enforce the edge differential privacy by calibrating noise based on
the smooth sensitivity [11]. The smooth sensitivity is to use a smooth upper bound on the
local sensitivity when deciding the noise magnitude. By doing this, we achieve the strict
differential privacy guarantee with smaller magnitude noise. We conduct experiments on
four real networks and compare the performance of our private dK-graph models with
the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff.
Empirical evaluations show the effectiveness of our proposed private dK-graph models.

2 Background

2.1 Differential Privacy

We revisit the formal definition and the mechanism of differential privacy. In prior work on
differential privacy, a database is treated as a collection of rows, with each row correspond-
ing to the data of a different individual. Here we focus on how to compute graph statistics
from private network topology described as its adjacency matrix. We aim to ensure that the
inclusion or exclusion of a link between two individuals from the graph make no statistical
difference to the results found.

Definition 1. (Differential Privacy[9]) A graph analyzing algorithm Ψ that takes as input
a graph G, and outputs Ψ(G), preserves (ε, δ)-differential edge privacy if for all closed
subsets S of the output space, and all pairs of neighboring graphs G and G′ from Γ(G),

Pr[Ψ(G) ∈ S] ≤ eε · Pr[Ψ(G′) ∈ S] + δ, (1)

where
Γ(G) = {G′(V,E′)|∃!(u, v) ∈ G but (u, v) /∈ G′}. (2)

A differentially private algorithm provides an assurance that the probability of a particu-
lar output is almost the same whether or not any individual edge is included. The privacy
parameter ε, δ controls the amount by which the distributions induced by two neighboring
graphs may differ (smaller values enforce a stronger privacy guarantee).

A general method for computing an approximation to any function f while preserving
ε-differential privacy is given in [8]. The mechanism for achieving differential privacy com-
putes the sum of the true answer and random noise generated from a Laplace distribution.
The magnitude of the noise distribution is determined by the sensitivity of the computation
and the privacy parameter specified by the data owner. The sensitivity of a computation
bounds the possible change in the computation output over any two neighboring graphs
(differing at most one link).
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Definition 2. (Global Sensitivity[8]) The global sensitivity of a function f : D → Rd (G ∈
D),in the analysis of a graph G, is

GSf (G) := max
G,G′s.t.G′∈Γ(G)

||f(G)− f(G′)||1 (3)

Theorem 1. (The Mechanism of Adding Laplace noise[8]) An algorithm A takes as input a
graph G, and some ε > 0, a query Q with computing function f : Dn → Rd, and outputs

A(G) = f(G) + (Y1, ..., Yd) (4)

where the Yi are drawn i.i.d fromLap(GSf (G)/ε). The Algorithm satisfies (ε, 0)-differential
privacy.

Differential privacy applies equally well to an interactive process, in which an adversary
adaptively questions the system about the data. Differential privacy maintains composabil-
ity, i.e., differential privacy guarantees can be provided even when multiple differentially-
private releases are available to an adversary.

Theorem 2. (Composition Theorem[10]) If we have n numbers of (ε, δ)-differentially pri-
vate mechanisms M1, · · · ,Mn, computed using graph G, then any composition of these
mechanisms that yields a new mechanism M is (nε, nδ)-differentially private.

Differential privacy can extend to group privacy as well: changing a group of k edges in
the data set induces a change of at most a multiplicative ekε in the corresponding output
distribution. In our approach, we generate synthetic graphs by adding controlled pertur-
bations to degree distributions of the original graph and hence in principle we can extend
the algorithm to achieve the node differential privacy or the k-edge differential privacy by
using the above composition theorem [10]. However, as shown in [12], graph analysis is
highly inaccurate under node differential privacy or k-edge differential privacy (when k
is large). In our future work, we will investigate the feasibility of graph generation under
node differential privacy.

It may be hard to derive the global sensitivity of a complex function or global sensitivity
yields unacceptable high noise levels. Nissim et al. [11] introduces a framework that cali-
brates the instance-specific noise with smaller magnitude than the worst-case noise based
on the global sensitivity.

Definition 3. (Local Sensitivity[8, 11]) The local sensitivity of a function f : D → Rd,
(G ∈ D) is

LSf (G) := max
G′s.t.G′∈Γ(G)

||f(G)− f(G′)||1. (5)

Under the definition of local sensitivity, we only consider the set of G′ for a given and
predetermined G, such that the inclusion or exclusion of a single link between individuals
cannot change the output distribution appreciably. We would emphasize that the release
f(G) with noise proportional to LSf (G) cannot achieve rigorous differential privacy as
the noise magnitude might reveal information about the database. Refer to Example 1 in
[11] for an illustrative example. To satisfy the strict differential privacy, Nissim et al. [11]
proposes the β-smooth sensitivity and shows that adding noise proportional to a smooth
upper bound on the local sensitivity yields a private output perturbation mechanism.
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Definition 4. (Smooth Sensitivity [11]) For β > 0, the β-sooth sensitivity of f : D → Rd

(G ∈ D),in the analysis of a given graph G, is

S∗f,β(G) = max
G′∈D

(
LSf (G′) · e−βd(G,G′)

)
(6)

where d(G,G′) is the distance between graphs G and G′ (i.e., the number of different edge
entries).

Nissim et al. [11] introduces how to compute smooth sensitivity based on the local sensi-
tivity at distance s (measuring how much the sensitivity can change when up to s entries
of G are modified).

Definition 5. (Computing Smooth Sensitivity)The sensitivity of f at distance s is

LS
(s)
f (G) = max

G′∈D:d(G,G′)≤s
LSf (G′) (7)

The β-smooth sensitivity can be expressed in terms of LS(s)
f (G):

S∗f,β(G) = max
s=0,1,··· ,n

e−sβ
(

max
G′:d(G,G′)=s

LSf (G′)

)
= max
s=0,1,··· ,n

e−sβLS(s)(G) (8)

Theorem 3 shows the mechanism of calibrating noise to the smooth upper bound to
achieve (ε, δ)-differential privacy. For functions that we cannot compute the smooth sen-
sitivity efficiently or explicitly, Nissim et al. proposes an approximation method that com-
putes the β-smooth upper bound on the local sensitivity of these functions and developed
a sample-aggregation framework for a large class of functions [11].

Theorem 3. (Mechanism to Add Noise Based on Smooth Sensitivity[11]) For a function
f : D → Rd(G ∈ D), the following mechanism achieves (ε, δ)-differential privacy (ε >
0, δ ∈ (0, 1)):

A(G) = f(G) +
S∗f,β(G)

α
· (Z1, · · · , Zd) (9)

where α = ε/2, β = ε
4(d+ln(2/δ)) , and Zi (i = 1, · · · , d) is drawn i.i.d from Lap(0, 1). Specifi-

cally when d=1, β can be reduced as β = ε
2ln(2/δ) .

2.2 Graph Generation Models

Over the years, researchers have proposed various graph models to generate graphs that
match properties of real networks. Among them, the simplest and most convenient one is
the classical E-R random graph Gn,p[20], which lays the foundation for the typical stochas-
tic approach [19, 21, 22] to generate graphs. With a given expected average degree d̄, we
can reproduce an n-sized graph by connecting every pair of n nodes with probability d̄/n.
In this section, we revisit two widely used graph generation models: the dK-graph model
[19] and the stochastic Kronecker graph model (SKG) [18].

TRANSACTIONS ON DATA PRIVACY 6 (2013)



132 Yue Wang, Xintao Wu

2.2.1 dK Graph Model

The dK graph model for graph construction mainly applies pseudograph approach, the
most common class of graph generation algorithms [23, 24], in constructing graphs match-
ing a desired family of properties called the dK-series in [19]. The dK-series is a finite set of
graph properties to describe and constrain random graphs in successively finer detail with
the increasing values of d.

The dK-series is defined as the series of properties constraining the generated graph’s
dK-distribution to be the same form as in a given graphG. dK-distributions are degree cor-
relations within non-isomorphic simple connected subgraphs of size d. For a given graph
G, the 0K distribution is simply the average node degree; the 1K distribution is the degree
distribution; the 2K-distribution is the joint degree distribution of G which represents the
probability that two nodes of degrees k and k′ are connected; the 3K-distribution of G is
the interconnectivity among triples of nodes. Overall, the dK-series of larger values of d
would capture more and more complex detailed properties of the original graph G. In the
limit, the dK-distribution describes any given graph completely.

For a given input graph G, the output synthetic 0K-graphs require maintaining the 0K-
distribution of G, that is the average node degree; while the output synthetic 1K-graphs
reproduce the original graph node degree distribution, and so forth. It is worth pointing
out that the degree distribution is different from the degree sequence. The degree sequence
is the sequence of length n where each entry D(i) = di corresponds to each node’s degree
whereas the the degree distribution is a distribution vector where each entry P1(di) = Ndi
represents the number of nodes whose degree is di. Generally, the set of (d + 1)K-graphs
is a subset of dK-graphs. In the whole space of random graphs, the number of possible
graphs satisfying the constraints of dK-series would decrease abruptly with the increase of
the value of d.

Figure 1: An example of dK-distributions

Figure 1 shows as an example of computing the dK-distributions from a graph G of size
5. For simplicity, the entry value of a dK-distribution is the total number of corresponding
d-sized subgraphs. For the given graph G, the 0K-distribution, P0 = 2, is G’s average
degree; the 1K-distribution, P1, is G’s node degree distribution: P1(2) = 3 means that
there are three nodes with degree two; the 2K-distribution, P2, is the graph G’s joint degree
distribution; P2(2, 3) = 3 means thatG contains three edges between 2- and 3-degree nodes;
for the 3K-distribution, there are two types of three-sized subgraphs, the triangle and triple
that does not form a triangle. In Figure 1, P36 (2, 3, 2) = 2 denotes that there are two non-
triangle triples where the mid node’s degree is three and degrees of the other two nodes are
two; while P3∆(2, 2, 3) = 1 denotes that there is one triangle formed by three nodes whose
degrees respectively are 2, 2, 3.
The dK-graph model [19] shows surprisingly great performance in capturing global graph

structure properties like spectrum and betweenness.
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2.2.2 Stochastic Kronecker Graph Model

Kronecker graphs [18] are based on a recursive construction process. The process starts
with an initiator graphG1 withN1 nodes. By a recursive procedure, larger graphsG2, ..., Gn
are generated. The rth graph generated in the rth recursion, Gr, has about (N1)r nodes.
Usually, we set N1 = 2. This procedure (Definition 7) is formalized by introducing the
concept of Kronecker product (Definition 6) of the adjacency matrices of two graphs.

Definition 6. (Kronecker Product) Given two matrices A and B of size n×m and n′ ×m′
respectively, their Kronecker Product is a matrix C of dimensions (n ·n′)× (m ·m′) defined
as

C = A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

an1B an2B · · · anmB

 (10)

Definition 7. (Kronecker Power) Given a Kronecker initiator matrix Θ1, the kth power of
Θ1 is defined by

Θ
[k]
1 = Θ

[k−1]
1 ⊗Θ1 = Θ1 ⊗Θ1 · · · ⊗Θ1 (11)

The Stochastic Kronecker graph (SKG) model was proposed in [18]. In the SKG model,
each entry of the initiator matrix Θ takes values in the range [0, 1] instead of binary val-
ues, representing the probability of that edge being present. Thus following Definition 7
to compute the Kronecker power of Θ1, each entry of the reproduced stochastic adjacency
matrices represents the probability of that particular edge appearing in the correspond-
ing graph. The final synthetic stochastic Kronecker graph is obtained by choosing edge
independently with a probability specified by the corresponding entry in the stochastic
adjacency matrix(Definition 8).

Definition 8. (Stochastic Kronecker Graphs[18])If Θ is an N1 ×N1 probability matrix such
that Θij ∈ Θ denotes the probability that edge (i, j) is present, Θij ∈ [0, 1]. Then the kth
Kronecker power P = Θ[k], is a stochastic matrix where each entry Puv ∈ P encodes the
probability of edge (u, v) appearing. This stochastic matrix encodes a stochastic Kronecker
graph. To obtain a graphG∗, an instance or realization of the distribution, denoted asR(P ),
an edge (u, v) is included in G∗ = R(P ) with probability Puv .

Applying SKG model to a given graph G, i.e. learning model parameters fromG, requires
the assumption that G is generated by an SKG model with a specific initiator matrix Θ.
Extensive researches [16, 25, 26] have been conducted to studying the problem of the esti-
mation of the true parameter, the initiator matrix Θ for G. In [25], the authors proposed an
estimation algorithm which made it possible to enforce differential privacy into SKG gen-
eration. Based on their approach, recently, differential privately SKG generation [16] has
been achieved by first computing the differentially private degree sequence and the total
number of triangles from the original graph, and then using them to compute the private
input parameters {E,H, T,∆} of Moment based estimation [25] which are used to finally
generate the private graphs.

3 Private dK-Graph Model

In this section, we respectively propose the approaches to enforcing differential privacy
into the 1K- and 2K-distributions based dK-graph generation models. The basic definitions
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Table 1: Basic Definitions and Terminologies Used in This Paper
The original graph G

Number of nodes in G n

Adjacent matrix of G A

An entry in A aij
The degree of a node i di
The vector of all di D

The degree/1K- distribution P1

The 2K-distribution P2

The neighboring node set of a node i Ngb(i)

Nodes in Ngb(i) but not in Ngb(j) Ngb(i)−Ngb(j)

and terminologies of a graph used in our work are listed in Table 1.

3.1 DP-1K Graph Model

The basic idea of our approach to generate differentially private graphs based on the 1K-
graph model is to firstly enforce differential privacy in the calculation of the 1K-distribution
and then use the private 1K-distribution as the input of the 1K-graph generator to generate
the private 2K-graphs.

In order to enforce differential privacy in the calculation of the 1K-distribution, we firstly
give the sensitivity of the 1K-distribution in Claim 1. Based on the global sensitivity, we
follow Theorem 1 to add Laplacian noise to the real 1K-distribution computed from the
original graph with a given privacy parameters ε (δ = 0 in this case). Taking the perturbed
1K-distribution as input, the 1K graph model generator could then generate lots of syn-
thetic graphs while satisfying (ε, 0)-differential privacy. In our work, we use the graph
model generator software provided in [19]. We conclude this process into Algorithm 1.

Claim 1. The global sensitivity of the 1K degree distribution of a graph G is GSP1(G) = 4.

Proof. When deleting an arbitrary edge (i, j) from graph G, the following four entries of
the degree distribution will be changed by exactly one: di,dj ,di − 1,dj − 1. So the global
sensitivity is 4.

Algorithm 1 Private Generation of 1K-graph
Require: Graph G, privacy parameters (ε)

Ensure: G̃ satisfies (ε, 0)-differential privacy
1: Compute the 1K-distribution P1(G)of G
2: Using ε to perturb P1(G) and acquire ε-differentially private P̃1(G) //Theorem 1
3: Call procedure 1K graph generation(P̃1(G)) to generate G̃.

Another possible approach to compute the private 1K-distribution is firstly querying the
private degree sequence(the vector containing each node’s degree), whose global sensitiv-
ity is 2, and then computing the private 1K-distribution from the private degree sequence.
However, the degree sequence is a much longer vector than the 1K-distribution; addition-
ally, every entry of the degree sequence vector would have smaller value than that of the
1K degree distribution. Therefore, the degree sequence vector would suffer more from the
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relative error though with smaller global sensitivity. With those considerations, we directly
query the 1K-distribution from the private graph database server for perturbation.

3.2 DP-2K Graph Model

Algorithm 2 illustrates the detail of our differentially private 2K-graph model, DP-2K. The
idea is first computing the differentially private 2K-distribution from the original graph,
and then using the private 2K-distribution as the input of the 2K-graph generator to gener-
ate the private 2K-graphs.

One challenge here is that the global sensitivity of the 2K-distribution is 4n−7 (as shown in
Claim 2), which is too large to be used for calibrating noise. In [17], the authors explored the
use of the local sensitivity to calibrate noise to the 2K-distribution and developed a private
2K-graph model. However, the approach based on the local sensitivity cannot achieve
rigorous differential privacy, as shown in [9, 11]. In our algorithm, we use the smooth
sensitivity, which is proved to achieve the rigorous differential privacy. We firstly derive
the local sensitivity at distance s for the original 2K-distribution LS

(s)
P2

(G)(Claim 2); then
compute the smooth sensitivity parameters (β, α) with the given (ε, δ) (Line 2) based on
Theorem 3; derive the β-smooth sensitivity for P2 with β, LS(s)

P2
(G) (Line 3); calibrate noise

based on the derived smooth sensitivity and acquire the (ε, δ)-differentially private 2K-

distribution ˜̃P2 (Line 4); and finally generate private 2K-graphs (Line 5) with the package
provided by [19]. Throug this process, our Algorithm 2 achieves rigorous (ε, δ)-differential
privacy.

Claim 2. The global sensitivity of the 2K-distribution is GSP2
(G) = 4n − 7. The local

sensitivity of 2K-distribution is LSP2(G) = maxi,j∈[n] 2(di + dj)− 3. The local sensitivity at
distance s of 2K-distribution is LS(s)

P2
(G) = min{maxi,j∈[n]{2(di +dj)− 3 + 2 ∗ s}, GSP2(G)}

Proof. When deleting an arbitrary edge (i, j) from graph G, the total value change among
entries used to involve di as one parameter is di, for the reason that i leaves the node set of
degree di; similarly those used to involve dj will also decrease by dj in total; specifically, the
total amount of decreased value of the above two cases is di+dj−1 since the entry P2(di, dj)
should be only counted once. After deleting edge (i, j), the degree of i, j will be di−1, dj−1,
so that the value of entries that used to involve parameter di − 1 or dj − 1 will be increased
by di−1+dj−1 in total. So that the local sensitivity is LSP2

(G) = maxi,j∈[n] 2(di + dj)− 3.
When di = dj = n− 1, we have GSP2

(G) = 4n− 7. Every time s increase by one, the di or
dj will increase by at most one, so that we have LS(s)

P2
(G) = min{maxi,j∈[n]{2(di +dj)− 3 +

2 ∗ s}, GSP2
(G)}.

Algorithm 2 Private Generation of 2K-graph
Require: Graph G, privacy parameters (ε, δ)

Ensure: G̃ satisfies (ε, δ)-differential privacy
1: Compute the 2K-distribution P2(G) of G
2: Using the (ε, δ) to compute (β, α) //Theorem 3
3: Compute the β-smooth sensitivity S∗P2,β

(G) using β, LS(s)
P2

(G) //Equation 8
4: Compute P̃2(G) using α, S∗P2,β

(G) //Equation 9
5: Call procedure 2K graph generation(P̃2(G)) to generate G̃.
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3.3 DP-3K Graph Model

Through in the limit, the dK-series are expected to describe any given graph completely. In
principle, we can develop private dK-graph models for varying d. However, when d >= 3,
the representation of the dK-distribution is complex, which causes the sensitivity (both
global sensitivity and smooth sensitivity) significantly large.

Claim 3 shows the sensitivity values of the 3K-distribution. Recall that P36 (d1, d2, d3) and
P3∆(d1, d2, d3) respectively represent the two types of three-sized subgraphs: the triangle
and the triple that does not form a triangle. When an arbitrary edge (i, j) is deleted from
graph G, many entries in the 3K-distribution will be affected.

Claim 3. The global sensitivity of the 3K-distribution is GSP3
(G) = 3

2 (n− 2)2 + 2(n− 2).
The local sensitivity of the 3K-distribution is

LSP3
(G) = max

i,j∈[n]
{|S1|+ 2|S2|+ 2(

∑
k∈S1

(dk − 1)−∑
k1,k2∈Ti,k1<k2

(ak1k2)−
∑

k1,k2∈Tj ,k1<k2

(ak1k2))}

where S1 = Ti∪Tj = {{Ngb(i)−Ngb(j)}∪{Ngb(j)−Ngb(i)}} and S2 = {Ngb(i)∩Ngb(j)}.
The local sensitivity at distance s of the 3K-distribution is

LS
(s)
P3

(G) = min{GSP3
(G), LSP3(G) + s+ 2 max

kq∈S3,t∈i,j
(

s∑
q=1

(dkq −
∑

kp∈S1t

akqkp)

−
∑

q1,q2∈[s];q1<q2

akq1kq2 (aikq1aikq2 + ajkq1ajkq2 )}

where S3 = {V − {i, j} −Ngb(i)−Ngb(j)}.

Proof. We use V to denote the vertex set of original graph G; Ti = Ngb(i)−Ngb(j) denotes
the set of nodes i’s neighbor excluding those being j’s neighbor at the same time; Tj =
Ngb(j) − Ngb(i) denotes the set of j’s neighbor excluding those being i’s neighbor; and
S1 = Ti ∪ Tj is the set of nodes which are either i’s neighbor or j’s neighbor but not both;
S2 = Ngb(i) ∩ Ngb(j) is the set of common neighbors of i and j; S3 is the set of nodes
which are neither i’s neighbor nor j’s neighbor.

In the local sensitivity, when edge (i, j) is deleted, there are three cases of change among
entries of P3.
Firstly, some non-triangle triples will no longer form three-sized subgraphs. Each of such
triple involves i,j and one node is S1. They are used to be counted in P3<(di, dj , dk) (k ∈
S1). There are |S1| of them , causing P3 changed by |S1|.
Secondly, some triangle triples will become non-triangle triples. Such triangle is formed
with i,j and one of their shared neighbors. They used to be counted in P3∆(di, dj , dk)
(k ∈ S2). After deleting (i,j), they are counted in P3<(di − 1, dj − 1, dk)(k ∈ S2). There are
|S2| of them , causing P3 change by 2|S2|.
Thirdly, some triples(no matter it is triangle or not) involve only one of i and j. The entries
of P3 counting them are changed since i and j jumps from the sets of respectively di and dj
to those ofdi − 1 and dj − 1. The rest part of LS(s)

P3
(G) describes this amount.
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Therefore we derive the local sensitivity in the form above.When the local sensitivity gets
to its maximum,i.e., di = dj = 1

2 (n− 2) + 1, |S2| = 0, every pair of nodes in S1 is connected
by an edge, we have

GSP3
(G) = 2× (n− 2)(n− 1− 1)− 2C2

n−2
2

+ 0 + (n− 2)

=
3

2
(n− 2)2 + 2(n− 2).

For the local sensitivity at distance s, every time s increases by one, we choose one node kq
from S3 and add one edge to connect kq to i or j, it will cause the change of the first case
by one, and that of the second case by zero, and that of the third case by two times of the
number new three-sized subgraphs brought in by kq . Thus we have the above form of the
smooth sensitivity at distance s.

Another challenge is that there is no known algorithm to generate dK-graphs for d >= 3
given a dK-distribution. The authors in [19] developed an algorithm, the 3K-rewire, for
generating 3K-graphs. However, the idea was to modify the original graph G keeping
the 3K-distribution unchanged. For private dP-graph models, we can not use the original
graph to rewire since the rewired graph may contain other private information than those
captured by the dK-distribution. As a result, we only conduct evaluations based on the
DP-1K and the DP-2K models.

4 Empirical Evaluation

In this section, we conduct evaluations to compare the three graph generation models: the
stochastic Kronecker graph (SKG) model, the 1K-graph model, and the 2K-graph model.
For the SKG, we use Gleich’s [25] and SNAP library [27]’s codes to generate the synthetic
graphs with real parameters learned from the original graphs. For both 1K- and 2K-graph
models, we use codes provided by [17] for dK-graph generation. We also implemented our
private dK-graph models, DP-1K and DP-2K, by following Algorithms 1 and 2 respectively.

We conduct experiments on four graphs: CA−GrQC (denoted as GC), AS20, Enron, and
Polbooks. GC is a co-authorship network from arXiv with 5242 nodes and 14484 edges;
AS20 is a technological infrastructure network with 6474 nodes and 12572 edges; these
two datasets can be downloaded from SNAP1. Enron2 is an email network collected and
prepared by the CALO Project and it has 148 nodes and 869 edges; and Polbooks3 is a
network of books about US politics published around the time of the 2004 presidential
election and sold by Amazon.com and it has 105 nodes and 441 edges.

4.1 Topology Metrics

Various metrics can be used to measure the graph utility. Refer to a survey [28] for details.
The used graph metrics are shown in Table 2.

• The nodes number(n), edges number(m) and average degree(d̄) describe the basic
scale of the graphs.

1http : //snap.stanford.edu/data/index.html
2http : //www.cs.cmu.edu/ enron/
3http : //www − personal.umich.edu/ mejn/netdata/
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Table 2: Scalar graph metrics notations
Metric Notation

Number of nodes n

Number of edges m

Average degree d̄

Assortativity coefficient r

Average clustering C̄

Average distance l̄

Diameter D

Largest eigenvalue of adjacency matrix λ

Number of triangles ∆

Transitivity t

Betweenness b

Modularity Q

• The asssortativity coefficient(r) describes the tendency that nodes with similar degree
are connected to each other. Assortative (disassortative) networks are those where
nodes with similar (dissimilar) degrees tend to be tightly interconnected. They are
more (less) robust to both random and targeted removals of nodes and links.

• The betweenness (b) is a commonly used measure of centrality, i.e., topological im-
portance, both for nodes and links. It is a weighted sum of the number of shortest
paths passing through a given node or link. As such, it estimates the potential traf-
fic load on a node or link, assuming uniformly distributed traffic following shortest
paths.

• The average distance (l) and the diameter (lmax) describe the separation of nodes,
which are important for evaluating the performance of routing algorithms as well as
of the speed with which worms spread in a network.

• The largest eigenvalue (λ) of the adjacency matrix describes the spectrum character
of the graph topology. Eigenvalues provide tight bounds for a number of critical
network characteristics [29, 30, 31] including network resilience and network perfor-
mance like the maximum traffic throughput of the network.

• The average clustering (C̄) is the average cluster coefficients of each nodes. The tran-
sitivity (t) and the number of triangles (∆) give the graph level clustering character-
istics of the graph.

• The modularity (Q) is defined as the fraction of all edges that lie within communities
minus the expected value of the same quantity in a graph in which the vertices have
the same degrees but edges are placed at random without regard to the communities.
The modularity captures the goodness of the community structure and a value Q = 0
indicates that the community structure is no stronger than would be expected by
random chance.

For each graph model, we generate 100 random graphs and choose one with the largest
average clustering coefficient C̄. This strategy was adopted in previous works (e.g., [17])
since the variation of C̄ from randomly generated graphs is often small.
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4.2 Evaluation Result

We report all our results for four networks in Tables 3,4,5, and 6. In each table, ‘Original’
denotes the original graph; ‘SKG’, ‘1K’, and ‘2K’ respectively denote the graphs generated
by the SKG, the 1K-graph model, and the 2K-graph model without privacy protection;
‘DP1K(ε)’denotes the graph generated by the private DP-1K model with a given ε value
and ‘DP2K(ε)’ denotes the graph generated by the DP-2K model with a given ε value. We
choose ε from (2000,200,20,2,0.2). For the DP-2K model, we use the same δ = 0.01. We do
not include the results for the private SKG model since they can be acquired from [16]. As
shown in Section 4.2.1, the SKG model (even without privacy requirement) incurs much
larger utility loss than the dK-graph models or the private DP-dK models.

4.2.1 SKG Model VS. dK-Graph Model

Our experiment results show that dK-graph models (both 1K and 2K) outperform the SKG
model. The dK-graph models more precisely capture most of the evaluated graph proper-
ties than the SKG model. Taking the graph AS20 (6474 nodes,12572 edges) as an example,
the 2K-graph model outperforms the SKG model with nine out of the ten metrics used in
our evaluation; and the 1K-graph model outperforms the SKG model with seven metrics.
The first five columns of Table 4 show the detailed metric values. Compared to the original
graph, the relative errors of metrics n, m and d of 1K- and 2K-graph models are around
0.1%, which indicates the dK-graph models can well capture the scale of networks. On the
contrary, the SKG model generates graphs that often have different scales than the original
one. For example, the relative errors of n, m and d are 54%, 23%, 166% for the SKG model.
This is because of the limitation of the SKG model that it could only generate graph with
node number near 2r (r is the iterative parameter of the model).
Apart from the global characteristics, the dK-graph models also show better performance

in per-node metrics than the SKG model. As the evidence, Figure 2 shows the overlayed
patterns of the distribution of the node betweenness (b) and the cluster coefficient sequence
(C) of the original graph AS20 as well as its corresponding ones generated by the SKG and
dK-graph models. Figure 2(a) plots the sorted node betweenness distribution, where both
the two lines representing 1K- and 2K-graph models are much similar and closer to the
line representing the original AS20 graph. Figure 2(b) plots the sorted cluster coefficient
sequence, where both 1K- and 2K-graph models more accurately reproduce the cluster
coefficient sequence even to the positions of every turning point in the line representing
the original graph. On the contrary, both the node betweenness distribution and the cluster
coefficient sequence from the SKG graph are significantly different from the original graph.

We would also point out that neither the dK-graph models nor the SKG model could
accurately capture the average cluster coefficient C̄, number of triangles ∆, transitivity t,
and the modularity Q where in most cases, the relative errors for them are more than 50%.
For example, as shown in the last rows of Tables 3,4,5, and 6, the community structure (in
terms of modularity Q) is much lost across all graph generation models due to the nature
of random generation. However, we can see that the dK-graph models preserve more
community structure than the SKG model. For the assortativity coefficient (r), it could only
be precisely captured by the 2K-graph model. We can see from Line 5 of Table 3 that, for
graph GC (5242 nodes and 14484 edges), the relative error of r for the 2K-graph is 2.3%
while the relative errors for those generated by the SKG and the 1K-graph model are more
than 90%.
Finally, we would emphasize that the SKG model cannot achieve utility preservation as
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Figure 2: Overlayed patterns of real network for AS20 and generated graphs

well as the dK-graph models. Even our private DP-dK models can achieve better utility
preservation than the SKG model without privacy enforcement. For instance, as shown
in Table 5 for the Enron graph, the DP-1K model with strong privacy protection (ε = 2)
outperforms the SKG model in terms of utility preservation with eight metrics. The DP-
2K graph model with weak privacy (satisfying (200, 0.01)-differential privacy) also outper-
forms the SKG model with eight metrics. In summary, our evaluation demonstrates that the
dK-graph models (both 1K and 2K), even with acceptable amount of perturbation, would
generate graphs with better utility than the SKG model.

4.2.2 Privacy vs. Utility of DP-dK Model

In this section, we focus on the tradeoff between utility and privacy of our private dK-
graph models. As shown in Section 3.2, the 2K-distribution often has the large sensitivity.
When enforcing strong privacy protection with small ε values like 0.2 or 2, the DP-2K graph
model would incur significant utility loss. For example, the generated graphs often have
extremely large scale and uncertain values of other graph metrics. However, for weak or no
privacy protection, the private DP-2K graph model outperforms the DP-1K graph model,
i.e., capturing more information of the original graph, especially for the assortativity coef-
ficient (r), the average cluster coefficient (C̄), and the modularity (Q); for other metrics like
n,m, d̄, λ, l,D, t, the DP-2K model shows at least the same level of accuracy as the DP-1K
model.

Figure 3 shows the values of metrics n,m, t, C̄ of the Polbooks graph and its correspond-
ing graphs generated by the DP-2K model with varying ε values. Each pillar from left to
right corresponds to the original graph, the 2K-graph model, and the DP-2K models with
varying ε values from 2000 to 0.2 respectively. We observe that the magnitude of metric
values changes dramatically as ε decreases from 20 to 0.2 in all the four metrics, which
indicate the significant utility loss for the DP-2K model with strong privacy enforcement.
Contrastively, Figure 4 show values for the 1K-model and the DP-1K models with varying ε
values. We can see that the DP-1K model well preserves the utility even with small ε values
like 2 and 0.2. We can also observe from Figures 3 and 4 that the DP-2K model achieves
better utility preservation than the DP-1K model under the weak privacy enforcement. For
example, when ε = 200, 2000, the DP-2K model has more accurate C̄ than the DP-1K model
(no difference for n,m, t).
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Additionally, our experiment results show that the assortativity coefficient (r) can only be
precisely achieved by the DP-2K model. For example, as shown in Line 5 of Table 3 for
the graph GC, the DP-2K graph model with (200, 0.01)-differential privacy incurs much
smaller loss ( with the relative error of 7.8%) than both the 1K-graph model and the DP-1K
graph models (with the relative errors more than 90%). The assortativity coefficient is an
important metric to describe the tendency that nodes with similar degree are connected.

To sum up, our evaluations show that the DP-2K graph model generally achieves better
utility than the DP-1K graph model for large ε values whereas the DP-1K graph model
would achieve better utility for small ε values. We also would point out that large ε values
(e.g., (2000,200,20) provide almost no privacy protection in practice and our evaluation
with large ε values is to check the performance of the DP-2K graph model in real social
networks. As shown in Tables 3 and 4, the DP-2K model is infeasible in terms of privacy
protection for GC and AS20 graphs as the smallest ε value is already 20. However, as shown
in Tables 5 and 6, the DP-2K model outperforms the DP-1K model for Enron and Polbooks
graphs even with small ε values.
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Figure 3: Utility change with varying ε on the DP-2K private model generated graphs for
Polbooks
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Figure 4: Utility change with varying ε on the DP-1K private model generated graphs for
Polbooks

5 Conclusion and Future Work

In this paper, we have developed private dK-graph generation models that enforce rig-
orous differential privacy while preserving utility. We have conducted theoretical analysis
and empirical evaluations to show that the developed private dK-graph generation models
significantly outperform the approach based on the stochastic Kronecker generation model.
We have shown that the DP-2K graph model generally achieves better utility preservation
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Table 3: Metrics Evaluation of Graph GC
Original SKG 1K 2K DP1K (ε) DP2K (ε)

20 2 0.2 2000 200 20
n 5241 3522 5241 4581 5242 5239 5382 4585 4652 6106
m 14484 13767 14484 12748 14509 14596 19430 12724 12949 24415
d̄ 5.527 7.817 5.527 5.565 5.535 5.572 7.220 5.550 5.567 7.997
r 0.659 0.016 0.017 0.643 -0.018 -0.007 -0.005 0.645 0.608 0.427
C̄ 0.529 0.014 0.008 0.018 0.007 0.008 0.015 0.017 0.015 0.011
l̄ 3.807 3.789 4.269 4.314 4.220 4.226 3.849 4.314 4.279 4.076
D 17 9 11 14 13 12 10 15 16 19
λ 45.616 23.029 18.259 41.039 17.594 18.182 27.770 40.460 34.347 38.785
∆ 48260 1585 775 17650 628 745 3035 17149 12303 12485
t 0.629 0.017 0.010 0.269 0.008 0.009 0.017 0.264 0.192 0.064
Q 0.801 0.317 0.407 0.503 0.404 0.402 0.323 0.506 0.495 0.401

Table 4: Metrics Evaluation of Graph AS20
Original SKG 1K 2K DP1K (ε) DP2K (ε)

20 2 0.2 2000 200 20
n 6474 2987 6474 6418 6475 6491 7006 6422 9678 49788
m 12572 15456 12571 12450 12585 15705 38431 12863 30716 240675
d̄ 3.883 10.348 3.883 3.879 3.887 4.839 10.970 4.005 6.347 9.667
r -0.181 -0.176 -0.173 -0.182 -0.173 -0.324 -0.579 -0.175 -0.113 -0.062
C̄ 0.252 0.081 0.149 0.164 0.148 0.338 0.597 0.113 0.056 0.010
l̄ 3.705 3.050 3.221 3.448 3.277 2.921 2.733 3.548 3.705 4.027
D 9 6 12 8 16 9 7 9 8 11
λ 46.31 39.60 49.89 42.81 50.39 70.79 161.75 41.14 51.43 –
∆ 6584 7052 11732 4373 12143 42351 549789 3087 12830 –
t 0.009 0.027 0.017 0.006 0.017 0.030 0.103 0.004 0.012 –
Q 0.608 0.250 0.480 0.513 0.478 0.402 0.230 0.505 0.385 0.359

Table 5: Metrics Evaluation of Graph Enron
Original SKG 1K 2K DP1K (ε) DP2K (ε)

20 2 0.2 20 2 0.2
n 148 254 148 146 147 153 281 582 6273 106976
m 869 1804 868 843 867 1024 1538 3024 29090 512785
d̄ 11.74 14.31 11.73 11.54 11.79 13.38 10.94 10.39 9.27 9.58
r -0.146 -0.223 -0.062 -0.148 -0.083 -0.077 -0.050 -0.062 -0.176 -0.019
C̄ 0.512 0.219 0.189 0.199 0.195 0.242 0.092 0.053 0.003 0.002
l̄ 2.514 2.296 2.295 2.266 2.280 2.240 2.614 3.007 3.992 4.997
D 6 4 4 4 4 5 5 6 8 8
λ 17.83 22.98 17.79 16.99 17.64 21.71 16.04 19.09 19.02 20.52
∆ 1700 1687 821 684 767 1519 599 845 652 –
t 0.344 0.124 0.167 0.146 0.155 0.210 0.078 0.048 0.004 –
Q 0.417 0.198 0.224 0.233 0.216 0.189 0.256 0.313 0.329 0.278
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Table 6: Metrics Evaluation of Graph Polbooks
Original SKG 1K 2K DP1K (ε) DP2K (ε)

20 2 0.2 20 2 0.2
n 105 128 104 103 104 108 170 221 1374 49089
m 441 849 440 433 440 448 712 873 6459 220939
d̄ 8.40 13.163 8.442 8.408 8.462 8.296 8.377 8.275 9.402 9.002
r -0.128 -0.106 -0.094 -0.129 -0.028 -0.108 0.025 -0.023 0.029 -0.008
C̄ 0.487 0.177 0.160 0.169 0.164 0.157 0.111 0.086 0.008 0.0003
l̄ 3.078 2.132 2.383 2.384 2.409 2.398 2.638 2.775 3.557 4.971
D 7 4 4 4 4 4 5 5 8 12
λ 11.93 18.01 11.87 11.59 12.17 11.58 12.56 12.75 13.30 13.58
∆ 560 825 231 230 246 208 239 318 243 221
t 0.348 0.176 0.144 0.147 0.153 0.130 0.089 0.102 0.009 0.0003
Q 0.502 0.199 0.269 0.286 0.273 0.270 0.283 0.336 0.350 0.285

than the DP-1K graph model with weak privacy enforcement (very large ε value) whereas
the DP-1K graph model would achieve better utility preservation with strong privacy en-
forcement (small ε value).

There are some other aspects of this work that merit further research. Among them, We
are interested in how to preserve some known graph metrics in addition to degree corre-
lations in the dK-graph generation process. We will continue the line of this research by
investigating how to enforce edge differential privacy on other graph generation models
(e.g., the class of exponential random graph models [32]) and comparing various models
in terms of the tradeoff between utility and privacy. We will explore whether it is feasible
to enforce node differential privacy or k-edge differential privacy on existing graph gener-
ation models. Most recently, ρ-differential identification [33] was proposed to restrict the
probability of individual re-identification under a parameter ρ. We will explore how our
graph generation models work under ρ-differential identification.
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