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Abstract—Genome-wide association studies (GWASs) have received increasing attention to understand how genetic variation affects

different human traits. In this paper, we study whether and to what extent exploiting the GWAS statistics can be used for inferring

private information about a human individual. We first provide a method to construct a three-layered Bayesian network explicitly

revealing the conditional dependency between single-nucleotide polymorphisms (SNPs) and traits from public GWAS catalog. The key

challenge in building a Bayesian network from GWAS statistics is the specification of the conditional probability table of a variable with

multiple parent variables. We employ the models of independence of causal influences which assume that the causal mechanism of

each parent variable is mutually independent. We then formulate three inference problems based on the dependency relationship

captured in the Bayesian network, namely trait inference given SNP genotype, genotype inference given trait, and trait inference given

known traits, and develop efficient formulas and algorithms. Different from previous work, the possible target of these inference

problems we study may be any individual, not limited to GWAS participants. Empirical evaluations show the effectiveness of our

proposed methods. In summary, our work implies that meaningful information can be inferred from modeling GWAS statistics, and

appropriate privacy protection mechanisms need to be developed to protect genetic privacy not only of GWAS participants but also

regular individuals.

Index Terms—Bayesian networks, genome wide association study, inference, independence of causal influence

Ç

1 INTRODUCTION

GENOME-WIDE association studies (GWASs) have received
intensive attention due to the rapid decrease of genotyp-

ing costs and promising potential in genetic diagnostics.
GWASs typically focus on associations between single-
nucleotide polymorphisms (SNPs) and human traits includ-
ing common diseases. It has been shown that many common
diseases such as various cancer types, have genetic disposi-
tion factors.

High-density genotyping microarrays, and recently next-
generation sequencing technologies, have been utilized to
identify common genetic variants that predispose an indi-
vidual to diseases. Genotype data is usually classified as
sensitive and should be handled by complying with specific
restrictions. For example, the Health Insurance Portability
and Accountability Act of 1996 (HIPAA) protects the pri-
vacy of individually identifiable health information in the
USA. It was shown that only 30-80 out of 30 million SNPs
are needed to uniquely identify an individual [25].

Therefore, in addition to the HIPPA privacy rule, the USA
Genetic Information Nondiscrimination Act of 2008 (GINA)
requires data collectors and supervisory organizations must
guarantee that data analysts meet privacy restrictions, and
organizations should protect against all forms of genetic dis-
crimination from using individuals’ genetic information.
Hence, genotype profiles for GWAS participants are only
accessible to researchers after confidentiality agreements are
signed.However, in biomedical community, there is a consid-
erable push to make experimental data publicly available so
that the data can be combined with other studies or reana-
lyzed by other researchers. As a result, most of the GWAS sta-
tistics and SNP-trait associations are publicly accessible. To
capture such information, the GWAS catalog [47] collects and
publicly releases literature-derived GWAS statistics, includ-
ing pair-wise SNP-trait associations and related statistics (risk
allele frequency, odds ratio, p-value, etc.).

Several studies [14], [17], [36], [37], [43], [45] have investi-
gated how to make use of the publicly released GWAS
statistics to infer an individual’s identity or other private
information of GWAS participants. Homer et al. [14] devel-
oped a method to determine whether a person with known
genotypes at a number of markers was part of a sample from
which only allele frequencies are known. They showed that
the probability a person who participated in a particular
GWAS cohort can be assessed. In [45], the authors examined
the use of local linkage disequilibrium structures in their
inference attacks. By searching for the co-occurrence of two
relatively uncommon alleles in different haplotype blocks,
the authors demonstrated that individuals can actually be
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identified from even a relatively small set of statistics, e.g.,
routinely published in GWAS papers. In [36], the authors
further showed that high-order single nucleotide variance
correlations can be exploited to breach genomic privacy.

In this paper, we investigate a related but different prob-
lem, i.e., exploiting GWAS statistics to infer private informa-
tion of unrelated regular individuals who are not participants
of GWAS. To this end, we propose to construct a Bayesian
network explicitly revealing the conditional dependency
between SNPs and traits from the GWAS statistics. Bayesian
networks have been demonstrated to be powerful for such
modeling to dissect complex (e.g., gene interactions) or causal
relationships between SNPs and associated traits [10], [19],
[48]. However, these methods require raw genotypes of SNPs
and such information is not publically available in the GWAS
catalog. On the contrary, we develop a method to build a
Bayesian network using only GWAS statistics for characteriz-
ing SNP-trait associations. In order to utilize the GWAS statis-
tics, the constructed network is composed of three layers, the
genotype layer, the allele layer, and the trait layer. Edges only
go from an upper layer to a lower layer, and all edges among
nodeswithin the same layer are prohibited.

The key challenge in specifying the Bayesian network is
that, when the dependent variable (i.e., trait) has associa-
tions with multiple independent variables (i.e., SNPs), the
Bayesian network needs to specify the conditional probabil-
ity table (CPT) of the trait conditional on every value combi-
nation of its associated SNPs. However, GWAS statistics
only provide the information for each trait-SNP association
pair. The information about epistatic interactions among
multiple SNPs that bring about joint effect on a trait is rather
limited. Additionally, complex traits are commonly associ-
ated with many SNPs. Therefore, it is a combinatorial
problem for specifying CPTs because the number of the con-
ditional probability distribution values in the CPT is expo-
nential to the number of SNPs associated with a trait.

To deal with this issue, we propose to adopt the models of
independence of causal influences (ICI), a family of models
which are widely used in building Bayesian networks [12],
[13]. The ICI models assume that, when there are multiple
parent variables, the causal mechanism of each parent vari-
able is mutually independent. Hence, the combined influ-
ence of multiple parents is decomposable into a series of
independent influence of each parent variable. Thus, an ICI
model enables us to specify the CPT of a variable given its
parents in terms of an associative and commutative operator
on the contribution of each parent. The learning process of
an ICI model generally requires raw data in order to find the
parameters that make the model fit the data best [32], [44]. In
this study, we investigate a scenario that the raw data (geno-
types) are unknown and only GWAS statistics are available.
Thismakes it challenging to build an ICImodel for construct-
ing a Bayesian network from only statistics. In order to do
this, we derive a formulation based on the Noisy-Or model
[21], one best known example of the ICI models, that can be
used to specify the CPT from the released GWAS statistics
where the underlying genotypes can be unknown.We prove
that, the specified CPT is accurate as long as the individual-
level genotype profile follows the Noisy-Or model. Then, we
empirically evaluate the fitness of the Noisy-Ormodel to val-
idate the proposedmethod.

As a pplications of the constructed Bayesian network, we
propose three inference problems: 1) trait inference given SNP
genotype that aims to infer the probability of a target develop-
ing certain traits when the target’s genotype profile is given;
2) genotype inference given trait that aims to infer the probabil-
ity of a target having a certain genotype profile when some
traits of the target are given; and 3) trait inference given trait
that aims to infer the probability of having a new trait given
known traits of the target. We study efficient inference meth-
ods to solve these problems using the constructed Bayesian
network. To evaluate the derived inferencemethods, we sim-
ulate three scenarios accordingly. In the first scenario, we
assume that an individual has taken a genetic test and wants
to infer his/her probability of having some sensitive trait
(e.g., disease) based on the genotype profile. For example,
companies like Family Tree DNA, 23andMe, and Ancestry
offer genotyping and analyzing service for various SNPs and
traits. In the second scenario, we assume that an attacker
such as an outsider has access to an anonymized genotype
profile database which contains the target individual’s
record and aims to identify the target individual’s record
from the anonymized dataset. For example, private traits
and attributes of individuals can be predictable from easily
accessible digital records of behavior such as Facebook Likes
[22]. Other patient social networks and online communities
like ‘patientlikeme.com’ provide a platform for users (mostly
patients) to connect with others who have the same disease
or condition and share their own experiences. Online pub-
lishing platform such as openSNP [8] also allows customers
to share and publish their genotype and phenotype profiles.
In the third scenario, we also assume the attacker knows
some traits of the target individual, but the attacker aims to
derive new traits. We evaluate how the derived inference
methods perform in these scenarios, and compare with pre-
viousmethods such as [16] for re-identifying users from ano-
nymized genotype databases.

The contributions of our study are as follows. 1) We apply
the classic Bayesian network approach [7], [11], [18] to build a
three-layered Bayesian network from the released GWAS
statistics. The constructed Bayesian network explicitly reveals
the conditional dependency between SNPs and traits, and can
be used to compute the probability distribution for any subset
of network variables given the values or distributions for any
subset of the remaining variables. 2)We formulate three infer-
ence problems based on the dependency relationship cap-
tured in the Bayesian network and develop efficient formulas
and algorithms to infer the posterior probabilities. 3) We con-
duct empirical evaluations and the results show the effective-
ness of our proposed methods, implying that meaningful
private information can be inferred from public GWAS statis-
tics on both participants and non-participants of GWAS. Our
results imply that privacy protection mechanisms may need
to be developed to protect genetic privacy of both GWAS par-
ticipants and the general population.

2 BACKGROUND

2.1 GWAS Catalog and Statistics

GWASs are usually conducted in a case-control setting,
where cases are individuals with the trait under investiga-
tion and controls are matched individuals without the trait.
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Each individual is genotyped by microarray or sequencing
platforms. Dependent on genotyping platform, the number
of SNPs genotyped in a GWAS setting typically ranges from
tens of thousands to tens of millions. In a GWAS framework,
we assume we study biallelic SNPs. Each biallelic SNP has
two possible nucleotide variations in this base position,
referred to as alleles (e.g., A/G). The allele that is more fre-
quent in the case group comparing with the control group is
called the risk allele (e.g., A), and the other one is called the
non-risk allele (e.g., G). Each individual carries a pair of
alleles inherited from both parents and the genotype refers
to the two alleles an individual has for a particular SNP. The
genotype that contains two risk alleles is called the homozy-
gote for risk allele (e.g., AA), the genotype that contains two
non-risk alleles is called the homozygote for non-risk allele
(e.g., GG), and the genotype that contains one risk allele and
one non-risk allele is called the heterozygote (e.g., AG).

A GWAS is then to assess the difference of the frequency
of alleles in the case and control groups. The typical process
of a GWAS is described as follows. First, a genotype profile
dataset is generated by genotyping the individuals in the
case group and the control group. For each SNP, the geno-
type frequency is counted over the two groups to obtain a
3� 2 contingency table, as shown in Table 1. Here, r0
denotes the number of individuals in the case group with
genotype AA and so forth. Then, the genotype frequency is
transformed into the allele frequency represented by a 2� 2
contingency table as shown in Table 2. To be specific, each
homozygote for risk/non-risk allele is counted as 2 copies
of risk/non-risk alleles, and each heterozygote is counted as
1 risk allele and 1 non-risk allele. After that, statistical tests
such as chi-square test, are performed on the allele contin-
gency table to investigate whether there is an association
between the SNP and the trait. In addition to a p-value indi-
cating the significance of the association, the GWAS also
reports odds ratios that measure the difference of frequency
of an allele in the case versus control group. Specifically, the
odds ratio is defined as the ratio between the proportion of
individuals with a specific allele in the case group, and the
proportion of individuals with the same allele in the control
group. If the odds ratio is larger than 1, it indicates that the
risk allele is more frequent in the case group than it is in the
control group. Finally, the trait and its significantly associ-
ated SNPs are reported, along with the risk allele type and
corresponding statistics (odds ratios, p-values, etc.). The

GWAS catalog [47] extracts these information from litera-
ture and releases curated GWAS statistics to the public. An
example of entries in the GWAS catalog is illustrated in
Fig. 1. It shows two records added on 1-May-15 by
Kristiansen, which are extracted from the paper (Kristian-
sen W, 2015) experimented on 8,013 Europeans about the
relationship between germ cell tumor and two SNPs. The
risk allele type, risk allele frequency in controls, p-value,
odds ratio, etc. are presented.

2.2 Bayesian Network Revisited

Bayesian networks are widely used for reasoning under
uncertainty and its representation rigorously describes prob-
abilistic relationships among variables of interest [7], [11],
[18]. A Bayesian network G ¼ ðV;EÞ is a Directed Acyclic
Graph (DAG), where the nodes in V represent the variables
and the edges in E represent the dependence relationships
among the variables. The dependence/independence rela-
tionships are graphically encoded by the presence or absence
of direct connections between pairs of variables. Hence a
Bayesian network shows the (in)dependencies between the
variables qualitatively, by means of the edges, and quantita-
tively, by means of conditional probability distributions
which specify the relationships. In general, a Bayesian net-
work represents the joint probability distribution by specify-
ing a set of conditional independence assumptions together
with sets of local conditional probabilities. An edge in the
network represents the assertion that a variable is condition-
ally independent of its nondescendants in the network given
its immediate predecessors. A conditional probability table
is given for each variable, describing the probability distribu-
tion for that variable given the values of its immediate prede-
cessors. Formally, for each variableXi 2 V , we have a family
of conditional probability distributions P ðXijParðXiÞÞ,
where ParðXiÞ represents the parent set of the variable Xi

in G. From these conditional distributions we can compute
the joint probability for any desired assignment of values
<x1; x2; . . . ; xn> to the tuple of network variables
X1; X2; . . . ; Xn by the factorization formula:

P ðx1; x2; . . . ; xnÞ ¼
Yn
i¼1

P ðxijParðXiÞÞ (1)

Note the values of P ðxijParðXiÞÞ are precisely the values
stored in the conditional probability table associated with
variable Xi. Bayesian networks can be used to perform effi-
ciently reasoning tasks. There are several algorithms
(including exact inference methods and approximate infer-
ence methods) to compute the posterior probability for any
variable given the observed values of the other variables in
the graph [33].

2.3 Independence of Causal Influence

We describe the models of independence of causal influence
that are widely used in building a Bayesian network. Con-
sider a set of independent variables A ¼ fA1; . . . ; Amg and a

TABLE 1
The Genotype Frequency

AA AG GG Total

Cases r0 r1 r2 R
Controls s0 s1 s2 S
Total n0 n1 n2 N

TABLE 2
The Allele Frequency

A G Total

Cases 2r0 þ r1 r1 þ 2r2 2R
Controls 2s0 þ s1 s1 þ 2s2 2S
Total 2n0 þ n1 n1 þ 2n2 2N

Fig. 1. GWAS catalog.
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dependent variable C. In our context, we assume C is a
binary variable. The CPT P ðCjAÞ that exhibits ICI is defined
as follows. First, each independent variable Aj is connected
with a hidden variable Xj, which represents the “effective
value” of Aj on C. The connection between Aj and Xj can
be defined via various stochastic or deterministic functions.
Then, the resulting hidden variables Xjs are combined
using certain deterministic function fð�Þ. Usually, in order
to be a decomposable function, fð�Þ is required to be associa-
tive and commutative. Besides, an additional hidden vari-
able X0 is added to represent background knowledge,
resulting a combination function X ¼ fðX0; X1; . . . ; XmÞ.
Finally, another stochastic or deterministic function is
applied to X to obtain the value of C. The structure of the
general formulation of the ICI models is shown in Fig. 2. In
general, learning an ICI model requires the raw data for
estimating parameters in the presence of hidden variables.

In the following, we introduce the Noisy-Or model, one
best known example of the ICI models. The Noisy-Or model
can be considered as a generalization of the deterministic Or
relation since it is an ICI model where the combination func-
tion is the Or function. In this model, each hidden variable
Xj is a binary variable taking values of 0 and 1. The connec-
tion between each pair of Aj andXj is defined as the follow-
ing probabilistic distribution

for each j; P ðXj ¼ 0jAj ¼ ajÞ ¼
1 if aj ¼ 0;
ujðajÞ otherwise;

�

where ujðajÞ is called the noise parameter representing the
probability that the presence of Aj (i.e., Aj 6¼ 0) would be
effective if the occurrence of C is true (i.e., C ¼ 1). It is also
defined that

P ðX0 ¼ 0Þ ¼ u0;

which is called a leak probability that allows C to occur
when all the Ajs are absent. Then, fð�Þ is defined as the
deterministic Or function that takes allXjs as the input, i.e.,

fðX0 ¼ x0; X1 ¼ x1; . . . ; Xm ¼ xmÞ ¼ x0 _ x1 _ � � � _ xm:

Finally, C directly takes the value of the output of fð�Þ.
Straightforwardly, C equals 0 if and only if all Xjs take the
value of 0. Thus, the probability of C ¼ 0 given A ¼ a is cal-
culated by

P ðC ¼ 0jA ¼ aÞ ¼ P ðX0 ¼ 0Þ
Y

j:aj 6¼0

P ðXj ¼ 0jAj ¼ ajÞ

¼ u0
Y

j:aj 6¼0

ujðajÞ:

By defining an indicator function

11ðajÞ ¼
0 if aj ¼ 0
1 otherwise

�

the above probability can be rewritten more compactly as

P ðC ¼ 0jA ¼ aÞ ¼ u0
Ym
j¼1

ujðajÞ11ðajÞ: (2)

To learn the Noisy-Or model, assume that we are given a
dataset D ¼ f. . . ;dl; . . .g, where each tuple dl ¼ fcl; alg rep-
resents the values of C and A. The objective function is typi-
cally formalized as maximizing the log-likelihood of the

model given the observed data, i.e.,
PjDj

l¼1 logP ðfC;Ag ¼ dlÞ.
Following the procedure in [44], the Noisy-Or model can be
learned using an EM algorithm [30]. The EM algorithm
with the derived formulas is included in Appendix A of the
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2017.2779498.

3 CONSTRUCT BAYESIAN NETWORK FROM

GWAS STATISTICS

In this section, we elaborate how to build a three-layered
Bayesian network. In general, we extract summary statistics
of risk alleles from the GWAS catalog [47], build a three-
layered Bayesian network from the aforementioned GWAS
catalog, and prove the derived formula based on the Noisy-
Or model for constructing a Bayesian network from GWAS
statistics. The constructed Bayesian network, which explic-
itly captures the conditional dependency between SNPs
and their associated traits, will be used as background
knowledge for inference. Throughout this paper, we use
upper-case alphabets, e.g., X, to represent a variable; bold
upper-case alphabets, e.g., X, to represent a subset of varia-
bles. We use lower-case alphabets, e.g., x, to represent a
value assignment of X; bold lower-case alphabets, e.g., x to
represent a value assignment of X. Thus, the probability of
the value assignment X ¼ x is given by P ðX ¼ xÞ, or simply
P ðxÞ if there is no ambiguity.

3.1 Knowledge from GWAS Catalog

We use the information publicly available from the GWAS
catalog [47] to construct the Bayesian network. As illustrated
in Fig. 1, such information includes trait/disease name, the
associated SNPs and corresponding risk allele type, the risk
allele frequency in control group, and statistics (e.g., odds
ratio and p-value) in the association test of each SNP. Specifi-
cally, we extract the following data from the GWAS catalog:
a trait set T , which containsm traits, and a SNP set S, which
contains n SNPs. For each specific trait Tk 2 T , we have a
subset of associated SNPs Sk. For each associated SNP
Skj 2 Sk, we can extract its corresponding risk allele type
(rkj) associated trait Tk, the odds ratio Okj of the association
test, and the risk allele frequency in the control group ft

kjðrÞ.
Though not directly given in the GWAS catalog, the risk

allele frequency in the case group can be derived from the
corresponding odds ratio and the risk allele frequency in
the control group. For a SNP Skj associated with a trait Tk,

Fig. 2. ICI model.
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its odds ratio is

Okj ¼
fc
kjðrÞð1� ft

kjðrÞÞ
ft
kjðrÞð1� fc

kjðrÞÞ
: (3)

With the released values of the odds ratio (Okj) and the risk
allele frequency in the control group ftkjðrÞ, the risk allele
frequency in the case group fckjðrÞ can be derived as

fc
kjðrÞ ¼

Okj � ftkjðrÞ
Okj � ftkjðrÞ þ 1� ft

kjðrÞ
: (4)

In summary, the background knowledge that an attacker
can obtain from the GWAS catalog [47] includes: a trait set T ,
a SNP set S, the risk allele type (rkj), the odds ratio Okj, and
the risk allele frequency in the control group ftkjðrÞ and in the
case group fc

kjðrÞ for each pair of trait and its associated SNPs.

3.2 Three-Layered Bayesian Network Construction

To construct a Bayesian network to represent the condi-
tional dependencies between traits and SNPs, we treat each
trait Tk 2 T as a binary random variable taking values
in the set f1; 0g. Here, value 1 stands for the presence of the
trait of a participant and value 0 stands for the absence. For
each SNP Sj 2 S, its allele and genotype are represented as
two different random variables. We denote Sj’s allele by Sa

j

taking values in f1; 0g, where 1 stands for that the SNP has
the risk allele and 0 otherwise; denote Sj’s genotype by Sg

j

taking values in f0; 1; 2g, where 0 represents the homozy-
gote for non-risk allele, 2 represents the homozygote for risk
allele, and 1 represents the heterozygote. Similarly, for a set
of SNPs S, the set of their alleles are denoted by Sa, and the
set of their genotypes are denoted by Sg.

We construct the Bayesian network with background
knowledge shown in Section 2.3. The constructed network
is composed of three layers, from top to bottom, the SNP
genotype layer, the SNP allele layer, and the trait layer,
based on the procedure of GWAS. Edges only go from an
upper layer to a lower layer, as shown in Fig. 3. For each
SNP Sj, two nodes Sg

j and Sa
j are at the top two layers

respectively to denote its genotype and allele. The edge is
pointing from Sg

j to Sa
j to represent the transformation of

the genotype frequency to the allele frequency. For each
trait Tk, there is a node at the bottom level of the network. If
a SNP Skj is associated with a trait Tk in the GWAS catalog,
then an edge is added pointing from Sa

jk to Tk to represent
this SNP-trait pair. Under the context of GWAS catalog
analysis, we cannot acquire the SNP-SNP correlation or the
trait-trait association. Thus, we prohibit the edges among
SNP genotype nodes, the edges among SNP allele nodes,
and the edges among trait nodes.

The next step to completely specify a Bayesian network is
to determine the CPT stored at each node. We aim to accom-
plish all specifications by using only the background knowl-
edge obtained from the GWAS catalog plus some prior
information. First, we need to acquire the prior probability
P ðSg

j Þ of each SNP genotype Sg
j at the top level of the net-

work. Since the comprehensive knowledge of the frequency
of every SNP in a population is limited, we first estimate the
allele prior probability P ðSa

j Þ, and then estimate P ðSg
j Þ using

the Hardy-Weinberg principle [4]. It is straightforward to
estimate P ðSa

j Þ as follows.

P ðSa
j ¼ sjÞ ¼ P ðSa

j ¼ sjjT ¼ 0ÞP ðT ¼ 0Þ þ P ðSa
j

¼ sjjT ¼ 1ÞP ðT ¼ 1Þ:

By the Hardy-Weinberg principle, P ðSg
j Þ is estimated as

P ðSg
j ¼ sjÞ ¼

P ðSg
j ¼ 1Þ2 sj ¼ 2;

P ðSg
j ¼ 0Þ2 sj ¼ 0;

2P ðSg
j ¼ 1ÞP ðSg

j ¼ 0Þ sj ¼ 1:

8><
>:

Second, we need to specify the conditional probability
P ðSa

j jS
g
j Þ for each SNP, which represents how the genotype

frequency is transformed into the allele frequency in
GWAS. For the typical procedure as shown in Section 2.1,
we can directly define P ðSa

j jS
g
j Þ as

P ðSa
j ¼ s1jSg

j ¼ s2Þ ¼
1 2s1 ¼ s2;
0:5 s2 ¼ 1;
0 otherwise.

8<
: (5)

Note that P ðSa
j jS

g
j Þ typically represents the assumption of

the genetic effect in the data. The definition in Equation (5)
is known as the additive model, which means that 2 copies
of risk alleles impose twice genetic effect of a single risk
allele on the trait. Our model can be easily extend to repre-
sent other assumptions. For example, to represent the domi-
nant model where having one or more risk alleles imposes
the same increased risk compared to the homozygote
for non-risk allele, we can transform the heterozygote
completely into the risk allele in Equation (5).

Finally, we need to specify the CPT of each trait Tk given
its associated SNPs Sk which represents the SNP-trait asso-
ciation. It is challenging to estimate the combined effect of
multiple independent variables on a dependent variable,
especially when the raw data is not available. We compute
P ðTk ¼ 0jSa

k ¼ saÞ as given by Equation (6) which is derived
from the Noisy-Or model presented in the Section 3.3. We
prove that, the computation in Equation (6) is accurate as
long as the genotype profile follows the Noisy-Or model.

P ðTk ¼ 0jSa
k ¼ saÞ ¼

P ðTk ¼ 0Þ
Q

Skj2Sk P ðSa
kj ¼ saj jT ¼ 0ÞQ

Skj2Sk
P

S
g
kj
P ðsgkjÞP ðsakjjs

g
kjÞ

: (6)

As can be seen, the knowledge required for accomplish
all above specifications only includes: 1) conditional proba-
bility P ðSajT Þ, and 2) prior probability P ðT Þ. The former
can be estimated from the allele frequencies ftð�Þ and fcð�Þ
according to the maximum likelihood estimate, and the lat-
ter can be acquired from literature or internet.

Fig. 3. A three-layered Bayesian network of traits and associated SNPs.
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3.3 Modeling SNP-Trait Associations

This section derives the CPT specification formulation
shown in Equation (6). Specifically, given a trait T and its
associated SNP S, we assume that a Noisy-Or model holds
for conditional probability of T given S’s genotype Sg, i.e.,
P ðT jSgÞ, which will later be empirically validated using raw
genotype data. This means that P ðT ¼ 0jSg ¼ sÞ can be rep-
resented as

P ðT ¼ 0jSg ¼ sÞ ¼ u0
Ym
j¼1

ujðsjÞ11ðsjÞ:

Then, we derive Equation (6) from the obtained model.

Lemma 1. Let P ðT jSgÞ follow the Noisy-Or model. Then for Sg

we have

P ðSg ¼ sjT ¼ 0Þ ¼
Ym
j¼1

P ðSg
j ¼ sjjT ¼ 0Þ:

Lemma 2. Let P ðT jSgÞ follows the Noisy-Or model. Then for Sa

we also have

P ðSa ¼ sjT ¼ 0Þ ¼
Ym
j¼1

P ðSa
j ¼ sjjT ¼ 0Þ:

Please refer to Appendices B and C in the supplementary
file, available online, for the proofs.

Theorem 1. Let P ðT jSgÞ follow the Noisy-Or model. Then
we have

P ðT ¼ 0jSa ¼ sÞ ¼
P ðT ¼ 0Þ

Qm
j¼1 P ðSa

j ¼ sjjT ¼ 0ÞQm
j¼1

P
S
g
j
P ðsgjÞP ðsaj js

g
jÞ

:

Proof. It directly follows Lemma 2 that

P ðT ¼ 0jSa ¼ sÞ ¼ P ðT ¼ 0ÞP ðSa ¼ sjT ¼ 0Þ
P ðSa ¼ sÞ

¼
P ðT ¼ 0Þ

Qm
j¼1 P ðSa

j ¼ sjjT ¼ 0ÞQm
j¼1 P ðSa

j ¼ sjÞ
: tu

4 INFERENCE BASED ON THE CONSTRUCTED

BAYESIAN NETWORK

With the three-layered Bayesian network constructed from
the GWAS catalog, we can calculate the joint probability for
any desired assignment of values to variable sets Sg of SNPs
S and traits T, which reflects the relationship among geno-
types and traits. We first develop the general formula for
any inference on the constructed Bayesian network. Then
we consider three specific inference problems, namely trait
inference given SNP genotype, genotype inference given
trait, and trait inference given trait. Finally, we present a
typical application using the derived inference methods.

4.1 General Inference Formula

Theorem 2. The joint probability for any value assignment to Sg

of S � S, T � T , i.e., P ðsg; tÞ, is given by

P ðsg; tÞ

¼
Y
Sj2S1

P ðsgjÞ
X

Sa
2
;S

g
3
;Sa

3

� Y
Sj2S2[S3

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ
�
;

where S1 denotes the SNPs in S but not associated with T, S2

denotes the SNPs in S and also associated with T, S3 denotes
the SNPs associated with T but not in S. Note that

P
X fðxÞ

means to sum up all fðxÞ going through all value assignments
to attributes X.

Proof. The joint probability can be written as

P ðsg; tÞ ¼
X

Sa;�Sg;�Sa;�T

P ðsg;�sg; sa;�sa; t;�tÞ;

where �S ¼ SnS and �T ¼ T nT.
According to the Markov property, the joint probabil-

ity can be factorized as

P ðs; tÞ ¼
X

Sa;�Sg;�Sa;�T

� Y
Sj2S[�S

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ

Y
Tl2�T

P ðtljParðTlÞÞ
�
;

which follows that

P ðsg; tÞ ¼
X

Sa;�Sg;�Sa

� Y
Sj2S[�S

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ

X
�T

Y
Tl2�T

P ðtljParðTlÞÞ
�

¼
X

Sa;�Sg;�Sa

� Y
Sj2S[�S

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ
�
:

Then, we divide S into four disjoint subsets: S1 denotes
the SNPs in S but not associated with T, S2 denotes the
SNPs in S and also associatedwith T, S3 denotes the SNPs
associatedwith T but not in S, and S4 denotes all the other
SNPs. Thus, S ¼ S1 [ S2, �S ¼ S3 [ S4, and ParðTkÞ for
Tk 2 T only involves SNPs in S2 and S3. It follows that

P ðsg; tÞ

¼
X

Sa;�Sg;�Sa

� Y
Sj2S[S3

P ðsgjÞP ðsaj js
g
jÞ
Y
Sj2S4

P ðsgjÞP ðsaj js
g
jÞ

Y
Tk2T

P ðtkjParðTkÞÞ
�

¼
X

Sa;S
g
3
;Sa

3

� Y
Sj2S[S3

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ

X
S
g
4
;Sa

4

Y
Sj2S4

P ðsgjÞP ðsaj js
g
jÞ
�

¼
X

Sa;S
g
3
;Sa

3

� Y
Sj2S[S3

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ
�

¼
X

Sa;S
g
3
;Sa

3

� Y
Sj2S2[S3

P ðsgjÞP ðsaj js
g
jÞ
Y
Sj2S1

P ðsgjÞP ðsaj js
g
jÞ

Y
Tk2T

P ðtkjParðTkÞÞ
�

¼
X

Sa
2
;S

g
3
;Sa

3

� Y
Sj2S2[S3

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ

X
Sa
1

Y
Sj2S1

P ðsgjÞP ðsaj js
g
jÞ
�

¼
X

Sa
2
;S

g
3
;Sa

3

� Y
Sj2S2[S3

P ðsgjÞP ðsaj js
g
jÞ
Y
Tk2T

P ðtkjParðTkÞÞ

Y
Sj2S1

P ðsgjÞ
�

¼
Y
Sj2S1

P ðsgjÞ
X

Sa
2
;S

g
3
;Sa

3

� Y
Sj2S2[S3

P ðsgjÞP ðsaj js
g
jÞ

Y
Tk2T

P ðtkjParðTkÞÞ
�
: tu
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Note that in Theorem 2, we applymarginalization to sum out
‘irrelevant’ variables so that we do not need to involve all
variables in our summation to calculate P ðsg; tÞ. As a result,
the computation only involves variables inT, S1, S2 and S3.

Additionally, we can calculate the conditional joint prob-
ability for any desired assignment of values to variable sets
Sg
x;Tx given the observed assignment of variable sets Sg

y;Ty

following Theorem 3. Note that Sg
x and Sg

y denote the set of
SNP genotypes; while Tx, Ty denote the set of traits.

Theorem 3. The probability for any desired assignment of values
sgx; tx to variables in Sg

x;Tx given the (observed) assignment of
values sgy; ty to variables in Sg

y;Ty can be directly derived

P ðsgx; txjsgy; tyÞ ¼
P ðsgx; tx; sgy; tyÞ

P ðsgy; tyÞ
(7)

where the joint probability P ðsgx; tx; sgy; tyÞ and P ðsgy; tyÞ can be
calculated following Lemma 2.

A given Bayesian network can be used to derive the pos-
terior probability distribution of one or more variables in
the network given the values observed for other variables in
the network. Theorems 2 and 3 show the simple and brute-
force formula, which have exponential time complexity and
are not computationally tractable. Researchers have devel-
oped various efficient exact inference algorithms that take
advantage of independence relationships represented in a
Bayesian network, and stochastic approximation algorithms
to estimate exact inference results when exact inference is
prohibitively time consuming [33].

4.2 Trait Inference Given SNP Genotype

We assume that we have been given the genotype profile of
the target and aim to derive the probability that the target has
a specific trait using the constructed Bayesian network. The
probability of the prevalence of a specific trait, which is
retrievable from literature or internet, is used as the prior
probability that the target has the specific trait. We then calcu-
late the posterior probability of the target having the trait by
inferring from the target’s genotypes. Formally, we represent
the genotypes of a target v as a vector, sgv ¼ ðsgv1; s

g
v2; . . . ; s

g
vnÞ,

with each entry sgvj denoting the genotype of SNP j.

Definition 1. The problem of trait inference given SNP geno-
type, aims to learn the posterior probability P ðtjsgvÞ that the tar-
get has a specific trait T given the target’s genotype profile sgv
using the constructed Bayesian network.

The posterior probability P ðtjsgvÞ can be calculated fol-
lowing Equation (7), specifically with sgx ¼ ;, ty ¼ ;,
tx ¼ ftg, and sgy ¼ sgv. In Lemma 3, we show our simplified
formula where the calculation only involves SNPs that are
associated with trait T .

Lemma 3. The posterior probability P ðtjsgvÞ can be calculated as

P ðtjsgvÞ ¼
X
Qa

� Y
Sj2Q

P ðsaj js
g
vjÞP ðtjqaÞ

�
; (8)

whereQ denotes the SNPs that are associated with trait T .

Proof. Denote by Q the SNPs that are associated with trait

T . We have P ðtjsgvÞ ¼
P ðt;sgvÞ
P ðsgvÞ

and apply Lemma 2 to

compute P ðt; sgvÞ. Note that S1 ¼ �Q, S2 ¼ Q, and S3 ¼ ;.
Thus, we have

P ðt; sgvÞ ¼
Y
Sj2 �Q

P ðsgvjÞ
X
Qa

� Y
Sj2Q

P ðsgvjÞP ðsaj js
g
vjÞP ðtjqaÞ

�
:

Therefore, it results that

P ðtjsgvÞ ¼
P ðt; sgvÞ
P ðsgvÞ

¼
Q

Sj2 �Q P ðsgvjÞ
P

Qa

�Q
Sj2Q P ðsgvjÞP ðsaj js

g
vjÞP ðtjqaÞ

�
Q

Sj2S P ðsgvjÞ

¼
Q

Sj2 �Q P ðsgvjÞ
Q

Sj2Q P ðsgvjÞ
P

Qa

�Q
Sj2Q P ðsaj js

g
vjÞP ðtjqaÞ

�
Q

Sj2S P ðsgvjÞ

¼
X
Qa

� Y
Sj2Q

P ðsaj js
g
vjÞP ðtjqaÞ

�
:

tu

Specifically, according to Equation (6), we have

P ðT ¼ 0jsgvÞ ¼ P ðT ¼ 0Þ
X
Qa

 Y
Sj2Q

P ðsaj js
g
vjÞP ðsaj jT ¼ 0ÞP

S
g
j
P ðsgjÞP ðsaj js

g
jÞ

!
;

which shows how the prior probability is updated to obtain
the posterior probability. Note that P ðT ¼ 1jsgvÞ ¼ 1� P ðT ¼
0jsgvÞ and P ðT ¼ 1jsgvÞ is often of more interest to users.

Lemma 3 implies that, instead of conducting inference
based on the whole Bayesian network G, we can simply
identify a subgraph G0 that contains all associated SNPs of
trait T , and then calculate the posterior probability follow-
ing Equation (8).

Trait inference can help an individual discover the risk of
having a certain disease based on his/her genotype profile. If
the genotype profile of an individual has been stolen, then it
introduces genetic privacy concerns since the genotype can be
used to infer private trait information of the target by attackers.

4.3 Genotype Inference Given Trait

In this problem, we aim to acquire the probability that an
individual has specific genotypes for a set of SNPs
given his/her associated trait information, with the Bayes-
ian network constructed. Formally, we denote by sgi ¼
ðsgi1; s

g
i2; . . . ; s

g
inÞ an arbitrary genotype profile. A subset of a

target’s trait Tv with its value assignment tv is given.

Definition 2. The problem of genotype inference given trait aims
to learn the posterior probability P ðsgi jtvÞ that the target has a
genotype profile sgi given the target’s traits tv using the con-
structed Bayesian network.

Lemma 4. The posterior probability P ðsgi jtvÞ is

P ðsgi jtvÞ

¼
Q

Sj2Q P ðsgijÞ
P

Qa

�Q
Sj2Q P ðsgijÞP ðsaj js

g
ijÞ
Q

Tk2Tv
P ðtkjPaðTkÞÞ

�
P

Qg;Qa

�Q
Sj2Q P ðsgjÞP ðsaj js

g
jÞ
Q

Tk2Tv
P ðtkjPaðTkÞÞ

� ;

where Q denotes the SNPs that are associated with traits in
Tv, and P ðtkjPaðTkÞ is computed according to Equation (6).

Proof. We have P ðsgi jtvÞ ¼
P ðsg

i
;tvÞ

P ðtvÞ and apply Theorem 2 to

compute the probabilities. For P ðsgi ; tvÞ, similar to the
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proof to Lemma 3, we obtain

P ðsgi ; tvÞ ¼
Y
Sj2Q

P ðsgijÞ
X
Qa

 Y
Sj2Q

P ðsgijÞP ðsaj js
g
ijÞ

Y
Tk2Tv

P ðtkjPaðTkÞÞ
!
;

where Q denotes the SNPs that are associated with traits
in Tv. For P ðtvÞ, when applying Theorem 2, note that
S ¼ ; and �S ¼ Q. Thus we have

P ðtvÞ ¼
X
Qg;Qa

 Y
Sj2Q

P ðsgjÞP ðsaj js
g
jÞ
Y

Tk2Tv

P ðtkjPaðTkÞÞ
!
:

tu

4.4 Trait Inference Given Trait

A straightforward extension to the above two inferences is
that, we can also infer other trait information of the target
individual. Assume that we are given some of the target’s
traits tv. Then Lemma 5 gives the probability that the target
has a new trait Tnew.

Lemma 5. The probability that the target has a new trait Tnew

given some of the target’s traits tv can be derived as

P ðtnewjtvÞ ¼
X
Qg

P ðtnewjqgÞP ðqgjtvÞ;

whereQ is the set of SNPs associated with tnew and tv.

The proof is straightforward by applying the d-separation
criterion [34]. We can see that P ðtnewjqgÞ can be derived
following Lemma 3, and P ðqgjtvÞ can be derived following
Lemma 4.

4.5 Application: Identity Attack

We present an attack that aims to infer the probability of a
record in an anonymized genotype database that belongs to
a target, when some traits of the target are available. As
shown in Fig. 4, assume that an attacker has access to an
anonymized genotype dataset R that contains the target’s
genotype record sgv. The attacker also knows a subset of
traits tv the target has. Then the attacker can learn the poste-
rior probability P ðsgi ¼¼ sgvjtvÞ that each genotype record sgi
in the database corresponds to the target, as shown in
Lemma 6. As a result, the attacker may be able to identify
the target’s record from the anonymized dataset.

Lemma 6. The posterior probability that the genotype record sgi
corresponds to the target given his trait tv is given by

P ðsgi ¼¼ sgvjtvÞ ¼
P ðsgvjtvÞPjRj
i¼1 P ðsgi jtvÞ

:

5 FURTHER CONSIDERATIONS

5.1 Dealing with SNP-SNP Correlations

In this paper we treat SNPs as they are mutually indepen-
dent since the SNP-SNP correlations cannot be obtained
from the GWAS catalog. However, in some situations the
SNP-SNP correlations may be available, e.g., being pro-
vided by some large-scale biomedical studies. In this sec-
tion, we briefly discuss how to integrate the SNP-SNP
correlations into our model.

When the SNP-SNP correlations are available, we assume
that in addition to the allele frequency in the case and control
groups, we also know the joint genotype frequency of the
correlated SNPs. Then, a straightforward extension of our
model can be given as follows. For two or more correlated
SNPs, we cluster their corresponding nodes in the genotype
layer as a single super node. The super node represents the
combination of the SNP genotypes, and takes value as the
cross-product of the sets of values of the genotypes. There is
an edge pointing from the super node to each corresponding
allele node. Note that the clustered Bayesian network repre-
sents the same joint probability distribution as the original
Bayesian network.

Fig. 5 shows an example, where SNPs S1 and S2 are cor-
related. Thus, we cluster nodes Sg

1; S
g
2 as a single node Sg

1;2,
i.e., Sg

1;2 ¼ Sg
1 � Sg

2. Node Sg
1;2 has two emanating edges

pointing to Sa
1 and Sa

2 respectively. Denoting the value com-

bination ðsg1; s
g
2Þ by sg1;2, according to Equation (1), the joint

probability of P ðsg1;2; s
g
3; t1; t2Þ in the clustered Bayesian net-

work is given by

P ðsg1;2; s
g
3; t1; t2Þ ¼X

Sa
1
;Sa

2
;Sa

3

P ðsg1;2ÞP ðsg3ÞP ðsa1js
g
1;2ÞP ðsa2js

g
1;2ÞP ðsa3js

g
3ÞP ðt1jsa1; sa2ÞP ðt2jsa2; sa3Þ:

(9)

In Equation (9), P ðsg1;2Þ ¼ P ðsg1; s
g
2Þ is assumed to be given

representing the known SNP-SNP correlation. For P ðsa1js
g
1;2Þ

(resp. P ðsa2js
g
1;2Þ), as shown in Section 3.2 it represents for SNP

S1 (resp. S2) how the genetic effect of the genotype is obtained
from the genetic effects of its two alleles, hence has no connec-
tion with other SNPs. So, we have P ðsa1js

g
1;2Þ ¼ P ðsa1js

g
1Þ and

P ðsa2js
g
1;2Þ ¼ P ðsa1js

g
2Þ. For P ðt2jsa2; sa3Þ, it can be accurately

computed using Theorem1 sinceSg
1;2 andSg

3 are independent.
The only issue of exactly computing Equation (9) lies in the
computing of P ðt1jsa1; sa2Þ. Since P ðt1jsa1; sa2Þ can be written as
P ðt1Þ

P ðsa
1
;sa
2
ÞP ðsa1; sa2jt1Þ, and we can easily obtain that P ðsa1; sa2Þ ¼

Fig. 4. Identity attack.

Fig. 5. An example network where S1 and S2 are correlated.
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P
S
g
1;2

P ðsa1js
g
1ÞP ðsa2js

g
2ÞP ðsg1;2Þ, we focus on the computing of

P ðsa1; sa2jt1Þ.
If P ðsa1; sa2jt1Þ is also given, then Equation (9) can be

exactly computed. If not, we can estimate P ðsa1; sa2jt1Þ as fol-
lows. We have

P ðsa1; sa2Þ � P ðsa1ÞP ðsa2Þ
¼
X
T1

P ðsa1; sa2jt1ÞP ðt1Þ �
X
T1

P ðsa1jt1ÞP ðt1Þ
X
T1

P ðsa2jt1ÞP ðt1Þ:

Usually, P ðT1 ¼ 0Þ is much larger than P ðT1 ¼ 1Þ. Thus, by
approximating P ðT1¼1Þ

P ðT1¼0Þ and
P ðT1¼1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ðT1¼0Þ

p by zero, it follows that

P ðsa1; sa2Þ � P ðsa1ÞP ðsa2Þ
� P ðT1 ¼ 0Þ P ðsa1; sa2jT1 ¼ 0Þ � P ðsa1jT1 ¼ 0ÞP ðsa2jT1 ¼ 0ÞP ðT1 ¼ 0Þ

� �
;

which leads to

P ðsa1; sa2jT1 ¼ 0Þ

� P ðsa1; sa2Þ � P ðsa1ÞP ðsa2Þ
P ðT1 ¼ 0Þ þ P ðsa1jT1 ¼ 0ÞP ðsa2jT1 ¼ 0ÞP ðT1 ¼ 0Þ:

It should be noted that, the above extension cannot deal
with the situation where the SNP-SNP correlations have
overlaps, e.g., in Fig. 5 S2 is further correlated with S3 but
the correlation among the three SNPs are not available. In
this case, we can resort to the factor graph model [26] to rep-
resent the SNP-SNP correlations. We leave the detailed
study to the future work.

5.2 Dealing with Numerical Traits

In this paper we assume that all traits are categorical. When
numerical traits are involved into analysis, the set of varia-
bles becomes a mixture of discrete (SNPs and categorical
traits) and continuous (numerical traits) variables, and hence
cannot be handled by using the traditional Bayesian net-
work. Research has been devoted to extend the Bayesian net-
work to contain both discrete and continuous variables. One
effort is called the Conditional Linear Gaussian (CLG) Bayes-
ian network [23]. This section briefly discusses how the CLG
Bayesian network can be used to deal with numerical traits.

Similar to the Bayesian network, a CLG Bayesian net-
work also consists of a DAG, where the difference is that
the variables are partitioned into two sets, the set of continu-
ous variables and the set of discrete variables. For each dis-
crete variable, it is associated with a conditional probability
table (CPT). For each continuous variable, there is a CLG
distribution conditional on each value assignment of its par-
ent variables. One limitation of the CLG Bayesian network
is that, a discrete variable is not allowed to have continuous
parents. This limitation will not affect the network construc-
tion in our case since only the traits can be continuous,
which cannot be the parents of SNPs or other traits.

Inference in the CLG Bayesian network is well-studied,
and many algorithms have been proposed in the literature
(e.g., [2], [23], [28]), which can facilitate the genotype and
phenotype inference in the constructed network. To learn
the CLG Bayesian network from the GWAS catalog, we can
first construct the network structure and then specify the
conditional probability distributions for SNPs and discrete
traits similarly to Section 3.2. The next step is to specify the

CLG distributions for continuous traits. A recent work has
applied the CLG Bayesian network to study the association
between SNPs and numerical traits [49].

6 EXPERIMENTS

We first validate the Noisy-Or model in Section 6.1. Then we
construct the Bayesian network from the GWAS catalog in
Section 6.2. The inference methods and their applications are
evaluated in Sections 6.3 and 6.4. The constructed Bayesian
network can be accessed from our web portal.1 The imple-
mentation details of constructing Bayesian networks (includ-
ing both categorical and numerical traits) can be found in [50].

6.1 Noisy-Or Model Validation

To evaluate the fitness of the Noisy-Or model in modeling
the SNP-trait association, we use raw data from openSNP
[8] where more than two thousand users over the world
share their genotype profiles and trait information. The
genotype file contains the results of the genetic test taken by
each user. Each line in the file corresponds to one SNP with
its identifier (rsid), its location on the reference human
genome and alleles provided. Besides, users also contribute
their phenotypes to openSNP, such as what the color of
their eyes, whether they have astigmatism, or whether they
are suffering from irritable bowel syndrome.

6.1.1 Data Setup

In the experiments, we use openSNP of version 20151231.
The genetic test results provided by users are taken from dif-
ferent genetic screening services. We focus on the genotyp-
ing files from 23andMe, Ancestry and FamilyTreeDNA. The
data from these services account for more than 99 percent of
the whole dataset. Among the 341 traits from the original
data, there are 129 binary traits, 136 non-binary categorical
traits, 39 numeric traits and 14 traits with unknown values.
In align with GWAS case-control settings, we focus on the
129 binary traits to evaluate ourmodels.

The data in openSNP is highly sparse and contains a
mass of missing values due to various genetic testing plat-
forms and varying willingness of individuals to share their
traits. To ensure that the statistic tests in the model construc-
tion are meaningful, we further filter the data as follows. For
each trait, we extract the individuals that belong to the con-
trol group and the case group. If the number of individuals
contained in both groups for a trait is less than 10, we
exclude this trait from our experiment. As a result, we
obtain 71 traits satisfying the requirement. Then, following
a typical GWAS procedure [42], from all associated SNPs
for each trait, we remove the SNPs with: 1) low minor allele
frequency (i.e., < 1%); 2) call rate less than 90 percent; and
3) the number of records containing the risk allele less than
10. After that, we discard the traits with no associated SNPs
left after filtering. Finally, we obtain a dataset which con-
tains 23 traits and 256,845 SNPs.

6.1.2 Results

To build the Bayesian network, we extract for each trait the
associated SNPs along with risk allele types, risk allele fre-
quencies and odds ratios. For each SNP, the allele frequencies

1. http://csce.uark.edu/�xintaowu/STIP.htm
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in the case group and the control group and odds ratios are
computed. If the odds ratio is larger than 1, the corresponding
allele is considered as the risk allele. Then, we perform the
Fisher’s exact test of independence to testwhether the associa-
tion between the trait and the SNP is significant. The thresh-
old of the p-value is set as 4� 10�5. We discard the traits with
zero associated SNP, as well as the traits with only one associ-
ated SNP as they have no effect in testing ICI model. As a
result, we obtain 7 traits and 34 associated SNPs for building
the Bayesian network, as shown in Table 3.

We then evaluate the fitness of the Noisy-Or model. For
each trait, we predict the observed number of individuals
with a specific trait and specific SNP genotypes, i.e., nðT;SgÞ,
by computing the predicted value as n̂ðT;SgÞ ¼
P ðT jSgÞnðSgÞ, where nðSgÞ is the observed total number of
individuals with the SNP genotypes. Since the data is highly
sparse, when computing the chi-square value we only sum
up the cells where nðSgÞ does not equal to 0. We then com-
pute the p-value to show the significance. The degree of free-
dom is computed as “total number of predictions-the
number of non-zero nðSgÞ - the number of model parame-
ters”. The null hypothesis H0 assumes that there is no rela-
tionship between the data and the model. Thus, the model is
not rejected if p-value>0.05. In addition, we further compute
the RootMean Square Error of Approximation (RMSEA) val-
ues [27] which is an absolute measure of fit, to show the
degree of the fitness. The RMSEA values are categorized into
four levels: close fit (.00 - .05), fair fit (.05 - .08), mediocre fit
(.08-.10) and poor fit (over .10). Note that RMSEA is applica-
ble only when the chi-square value is larger than the degree
of freedom (df), and is labeled as ‘NA’ otherwise. The results
are shown in Table 4. As can be seen, the Noisy-Or model is
accepted for all traits according to the p-values, which indi-
cates the model is a good fit. The values of RMSEA show a
close fit in general. Therefore, we validate the use of the
Noisy-Ormodel inmodeling SNP-trait association.

6.2 Bayesian Network Construction

With the justified Noisy-Or model for constructing a Bayes-
ian network, we set out to construct a Bayesian network

captured in GWAS statistics. Specifically, we construct a
Bayesian network using data extracted from the online
GWAS catalog [47] as of Feb 25th, 2016. This version of the
GWAS catalog includes 2,347 publications and 23,152
records (SNP-trait pairs) about 17,781 SNPs associated with
1,457 traits. Publications included in such a catalog are lim-
ited to those attempted to assay at least 100,000 SNPs in the
initial stage. SNP-trait pairs listed are limited to those with
p-values less than 10�5. For each record, the odds ratio or
beta coefficient is provided to indicate the association of the
trait-SNP pair, depending on whether the trait is categorical
(e.g., some disease) or numerical (e.g., height). The two val-
ues are contained in the same field in the dataset.

In this paper, we target for categorical variables only.
Thus, we focus on a subset of data published as the interac-
tive diagramby theGWAS catalog,where an additional attri-
bute “orType” is used to clearly indicate whether the odds
ratio is provided. This subset of data includes 5,047 records
with 791 traits associated with 4,250 SNPs, and SNP-trait
pairs are limited to those with p-values less than 5� 10�8.
We extract the records with the odds ratio provided. As a
result, we obtain 2,325 records with 266 traits associated
2,177 SNPs. Among these SNPs, there are 1,941 SNPs associ-
ated with a single trait, 122 SNPs associated with two traits,
and at the most, one SNPs associated with 7 traits. Finally,
we build a knowledge database for all extracted traits and
associated SNPs including the risk allele type, risk allele fre-
quency in the control group, and the odds ratio.

Based on the knowledge database, we build the Bayesian
network according to Section 3.2. Particularly, to acquire the
prior probability (prevalence) of each trait, we classify all
the traits into 17 categories (e.g., immune system disease,
nervous system disease), and retrieve the average preva-
lence of each category from the Wikipedia.2 We use the
average prevalence of a category as the prior probability of
each trait belonging to the category. Our constructed Bayes-
ian network can be refined by assigning the accurate prior
probability for each trait when available.

6.3 Simulated Scenario: Trait Inference

We evaluate the constructed Bayesian network using two
simulated scenarios. In the first scenario, we infer the proba-
bility of an individual of having a trait given his/her geno-
type profile using the constructed Bayesian network. We
use the genotype profiles in the 1000 Genomes Project [40]
and extract a dataset referred to as ‘CEU’ for our

TABLE 3
SNP-Trait Associations

Traits SNPs Traits SNPs

Eye with blue halo rs6913354 Irritable bowel syndrome rs8039023

rs10460585 rs2948814

Hair on fingers rs1239925 Do you grind your teeth rs3923767

rs11715867 rs2531864

rs2302025 rs2042279

ADHD rs1496496 rs12094507

rs4619 rs9809185

rs7235392 Enjoy driving a car rs2409764

rs664510 rs12564559

rs1910236 rs10882959

rs6922476 rs6601522

Astigmatism rs747644 rs1002399

rs1466410 rs6993841

rs11680053 rs958648

rs12358733 rs3808513

rs1400390 rs6601518

rs10508470 rs357281

TABLE 4
The Chi-Square Value, Degree of Freedom (df), p-Value,

RMSEA of the Noisy-Or Model

Trait Chi-square df p-Value RMSEA

Eye with blue halo 6.73 4 0.15 0.10
Hair on fingers 14.46 14 0.41 0.02
Irritable bowel syndrome 5.24 4 0.26 0.05
ADHD 55.32 53 0.38 0.02
Astigmatism 132.55 123 0.26 0.02
Do you grind your teeth 50.13 49 0.42 0.02
Enjoy driving a car 96.33 98 0.52 NA

2. http://en.wikipedia.org/wiki/copd
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experiment. It consists of 99 HapMap individuals from Utah
residents with Northern and Western European ancestry
(CEU) in the 1000 Genomes Project, which are treated as tar-
gets of trait inference in this study.

For each CEU individual v, we compute his/her poste-
rior probability P ðTk ¼ 1jsgvÞ of having each trait Tk given
the SNP genotype profile sgv according to Lemma 3. Then,
we compute the relative difference rd between the prior
probability and the posterior probability of each trait, i.e.,

rd ¼ P ðTk¼1jsgvÞ�P ðTk¼1Þ
P ðTk¼1Þ , and rank the traits according to the rd

for each individual. Fig. 6 shows for top-3 and bottom-3
traits of each individual. A total of 24 traits are included as
illustrated in Fig. 6, each of which is represented as a row.
Each column shows the top traits of an individual, where
the green and red dots represent the traits with the most
positive and negative rd respectively.

Tables 5 and 6 show the information of a snapshot of the
constructed Bayesian network and the computed posterior
probabilities. There are 7 traits and 9 SNPs. In Table 5, the
risk allele type, risk allele in the control group and the odds
ratio of each each SNP-trait pair are shown in Columns 3-5.
Note that SNP rs2187668 is associated with two traits. The
calculated risk allele frequency in the case group for each
SNP-trait is shown in Column 6. Note that there is a big gap
between the risk allele frequency in the case group and that
in the control group. The prior probability (prevalence) of
each trait is shown in Column 7. In Table 6, each index cor-
responds to the trait with the same index in Table 5. Col-
umns sgv and Count respectively show the genotypes of the
associated SNPs and the number of individuals who have

the genotypes. As before, 0 denotes the genotype of two
non-risk alleles, 2 denotes the genotype of two risk alleles,
and 1 denotes the genotype of one risk allele and one non-
risk allele. Column P ðtjsgvÞ shows the posterior probability
of one individual has a trait given his SNP genotype profile.
The last column rd shows the relative difference between
the prior probability and the posterior probability of each
trait. As can be seen, all the posterior probabilities are signif-
icantly different from the corresponding prior probability of
having a trait. In general, the posterior probability of a trait
is larger if the individual has more risk alleles.Hence, the
constructed Bayesian network is useful to infer new trait
information. We also observe that, when there are multiple
associated SNPs, the effect of each SNP can be different. For
example, Trait 1 is associated with two SNPs. The posterior
probability when the genotypes are ð0; 1Þ is larger than that
when the genotypes are ð2; 0Þ, implying that the second
SNP has greater effect than the first one.

6.4 Simulated Scenario: Identity Inference

In this scenario, we evaluate whether a target individual can
be identified from an anonymized genotype database by an
attacker given some traits of the target individual using
the Bayesian network. For comparison we also include
Humbert’s de-anonymizing method proposed in [16]. This
method also aims to identify the genotypes that correspond
to the given traits, making use of the single SNP-single trait
correlation. The difference lies in that this method relies
upon some invalidated independence assumption, whereas

Fig. 6. Top-3 and bottom-3 traits of each CEU individual.

TABLE 5
Trait-SNPAssociation

Index Trait SNP-risk allele ftkjðrÞ Okj fckjðrÞ P ðtkÞ

1 Type 1 diabetes rs9272346-G 0.13 8.3 0.55 0.25

rs2647044-A 0.61 5.49 0.90

2 Behcet’s disease rs17482078-T 0.02 4.56 0.09 0.04

3 Crohn’s disease rs11924265-C 0.02 3.99 0.08 0.26

rs76418789-G 0.93 2.06 0.97
rs2066847-G 0.06 2.27 0.13

4 Fuchs’s corneal dystrophy rs613872-G 0.15 5.47 0.49 0.09

5 Freckles rs1805007-T 0.05 4.37 0.19 0.05

6 Celiac disease rs2187668-T 0.26 6.23 0.68 0.26

7 Immunoglobulin A 0.13 2.53 0.27 0.05

TABLE 6
Posterior Probability of Certain Trait Considering

Associated SNPs

Index sgv Count P ðtjsgvÞ rd Index sgv Count P ðtjsgvÞ rd

1 (0,0) 28 0.149 �0.403 3 (0,2,2) 89 0.349 0.341
(1,0) 30 0.198 �0.208 (1,2,2) 7 0.367 0.411
(2,0) 22 0.247 �0.012 (2,2,2) 3 0.385 0.481
(0,1) 10 0.269 0.078 4 (0) 66 0.056 -0.379
(1,1) 6 0.311 0.245 (1) 27 0.150 0.670
(2,1) 3 0.353 0.413 (2) 6 0.245 1.718

2 (0) 55 0.037 �0.064 5 (0) 75 0.043 -0.138
(1) 36 0.094 1.351 (1) 23 0.104 1.076
(2) 8 0.151 2.766 (2) 1 0.164 2.289

6 (0) 80 0.129 �0.501 7 (0) 80 0.024 -0.511
(1) 19 0.305 0.174 (1) 19 0.108 1.162

ZHANG ETAL.: BAYESIAN NETWORKCONSTRUCTION AND GENOTYPE-PHENOTYPE INFERENCE USING GWAS STATISTICS 485



our method is based on the independence of causal influ-
ence, which is shown to have a good fitness in modeling the
SNP-trait associations in Section 6.1. We compare the identi-
fication accuracy of the Humbert’s method to ourmethod.

We consider the 7 trait-SNPs pairs listed in Table 7 whose
odds ratios are larger than 10. The CEU dataset is used to
serve as the anonymized genotype database. To simulate an
attack, we first designate a target individual whose traits tv
and genotypes sgv are known. Then we blend the genotype
profile of the target into the CEU dataset (containing the
genotype records of the 99 unrelated CEU individuals), and
attempt to re-identify it assuming that the attacker only
knows the target’s traits tv. To define the target, we assume
that the target has a 50 percent chance to have each trait, i.e.,
P ðTk ¼ 1Þ ¼ 0:5 for each trait Tk. We then randomly gener-
ate the genotype record for the target individual. The gener-
ating strategy is that for each SNP Skj associated with one
trait Tk, we generate Sg

kj ¼ sgkj with the probability
P ðSg

kj ¼ sgkjjTkÞ. In this way we simulate a scenario where
the target is randomly selected from the case and control
groups. Finally, we calculate the probability that the gener-
ated record is correctly identified as belonging to the target
individual, given the background trait information, accord-
ing to Lemma 6. We also compare the identification capabil-
ity with different amount of background knowledge, i.e.,
with the size of trait set tv ranging from one to four.

We run this whole process 10,000 times for each trait
set. Fig. 7a shows the average value of the resulted proba-
bilities. As shown in Fig. 7a, the green line is the baseline
representing the probability 1/100 (100 = 99 CEU individ-
uals + 1 target) that the generated record is inferred as
belonging to the target individual without any back-
ground knowledge. The blue line represents the inferred
probability based on the Bayesian network, and the red
line represents the inferred probability using the
Humbert’s method. The first points in the blue and red
lines represent the results given the value of the first trait
(according to the trait index in Table 5) of the target. Simi-
larly, the second points represent the results given both
values of the first two traits of the target, and so on. The
bar at each point shows the standard deviation of the
resulting probabilities of 10,000 times of test. We can see
that in general, the probabilities of correctly identifying
the target individual of both methods increase as the
background knowledge increases, and the identification
probability of our method is significantly larger than that
of the situation without any background knowledge (i.e.,
0.01). Comparing the two methods, our method consis-
tently outperforms the Humbert’s method (the p-value of

the t-test is 0.005). In addition, the identification probabil-
ity given only one trait of our method is even larger than
that given all four traits of the Humbert’s method, show-
ing that our method significantly improves the identifica-
tion accuracy over the Humbert’s method.

Fig. 7b shows the distribution of the inference probability
among the 10,000 times of identifications of our method. As
the amount of background traits increases, the peaks of the
process count would be located at positions with larger
identifying probabilities. This indicates that in general, the
more background knowledge we have, the more probably
that the target individual’s record is correctly identified. On
the other hand, multiple peaks in each line represent differ-
ent identifying probabilities due to different combinations
of background traits, as well as different possible genotype
records being randomly generated.

As an alternative method of defining the target, we lever-
age the openSNP users as they share both of their trait and
genotype profiles online. By blending the profile of an
openSNP user into the CEU dataset and re-identifying it, we
evaluate the risk of privacy leak of the openSNP users
although their profiles are anonymized. One issue here is that
the sets of traits and SNPs contained in the GWAS catalog and
those contained in openSNP are not identical. In order to per-
form the attack, we select the target individuals from
openSNP who have reported the traits and SNPs which are
also contained in the GWAS catalog. Thus, we first identify
the overlapped traits and SNPs contained in both the GWAS
catalog and openSNP. Among all the identified traits and
SNPs, we further require that the odds ratio of the trait-SNP
pair to be larger than 2 so that the effect of the SNP on the trait
is significant. We have 3 traits and 7 associated SNPs satisfy-
ing the requirement, which are shown in Table 8. Then, we
select the openSNP users who have reported at least one of
the three traits and all the SNPs associated with the reported
traits. As a result, we obtain a total of 101 openSNP users who
are considered as targets in the experiment.

We compute the probability for each target to be correctly
identified from the database. The results for all targets are
shown in Fig. 8a. As can be seen, nearly half (51/101 for our
method and 41/101 for the Humbert’s method) of the targets
have the probability of identification higher than 0.01. In this
case, it shows that there is no obvious risk for openSNP users.
This is probably due to the difference between the openSNP
users and the population represented by the GWAS catalog.
However, as shown in Fig. 8b, if we confine the targets to
those who have at least reported the trait of
‘Hypertriglyceridemia’, they have higher chances to be more
accurately identified (19/30 for our method and 13/30 for the

TABLE 7
Trait-SNP Pairs

Trait SNP-risk allele Okj

Exfoliation glaucoma rs893818-A 20.94
rs3825942-G 20.1

Response to hepatitis C treatment rs11697186-A 33.33
rs8099917-G 27.1
rs6139030-T 25

Blue versus brown eyes rs1667394-T 29.43
Skin pigmentation rs1834640-G 12.5 Fig. 7. (a) Average probability of identification. (b) Probability distribution

of identification.
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Humbert’s method). These results show that, for certain
openSNP users there are higher risk of privacy leak. Under
what circumstance the openSNP users may face higher risk of
privacy leak is worthy of further study. Comparing the two
methods, it can be seen that our method still outperforms the
Humbert’smethod in term of the identification accuracy.

7 RELATED WORK

The detection of SNP-trait associations by building Bayesian
networks has been studied in biomedical fields, where a
Bayesian network is used to address the high computation-
ally complex and high dimensional problems. In [19] the
authors used a score-based Bayesian network structure
learning algorithm to detect epistasis or interactions among
SNPs. In [10], the same problem is addressed by using a
new information-based score and a branch-and-bound
search algorithm to discover the structure of the Bayesian
network. As an extension to the work of [19], a recent study
[48] proposed an exhaustive search on a Bayesian network
to detect high order associations of SNPs with traits, with-
out requiring marginal effects on low dimensional datasets.
All of the related work aforementioned requires a raw geno-
type dataset to construct a Bayesian network. Our work is
novel in that we build a Bayesian network from the publicly
released GWAS statistics where the underlying genotypes
are not publicly available.

Our previous work [46] showed that the released GWAS
statistics can be used to build a two-layered Bayesian network
for inference. Nonetheless, this work suffers from significant
limitations. First, the constructed Bayesian network contains
only the nodes representing traits and nodes representing
SNP alleles. Thus, it cannot directly characterize the associa-
tions between the traits and the genotypes which are the com-
binations of two alleles. Second, the orientation of the arcs are
pointing from trait nodes to SNP nodes, which contradicts to
the fact that in GWAS researchers usually treat the traits as
the dependent variables and the SNPs as the independent var-
iables. Finally, it assumes that the SNPs are conditionally
independent given the traits that they are associated with.
However, this assumption has not been validated. In our
work, we overcome all these limitations and study how to
build an accurate Bayesian network fromGWAS statistics.

Our method is based on the models of Independence of
Causal Influence. ICI is proposed to overcome the problem
of specifying a large number of conditional probability dis-
tributions in the CPT for a node with multiple parents in the
Bayesian network. Examples of widely used ICI models
include Noisy-Or, Noisy-Max, Linear-Gaussian, etc. [13].
The Noisy-Max model is equivalent to the Noisy-Or model

in our situation where each hidden variable Xj is binary.
The Linear-Gaussian model is proposed for modeling
numeric variables. Therefore, these two models are not dis-
cussed in this paper.

Genetic privacy has also been actively studied in the lit-
erature (refer to survey papers [5], [31], [38]). For example,
Homer et al. developed a method that can identify whether
a target with some known SNPs comes from a population
with known allele frequency [14]. It attracted more and
more attention on the privacy disclosure of the public dis-
semination of the genotype-related data and aggregate sta-
tistics from the genome-wide association studies (GWAS)
[17], [29], [36], [37], [43], [45], [52]. Another work [9] showed
that full identities of personal genomes can be exposed via
surname inference from recreational genetic genealogy
databases followed by Internet searches. They considered a
scenario in which the genomic data are available with the
target’s year of birth and state of residency, two identifiers
that are not protected by HIPAA. In our previous work [46],
we also studied whether and to what extent the unperturbed
GWAS statistics can be exploited by attackers to breach the
privacy of regular individuals who are not GWAS partici-
pants. Two attacks, namely trait inference attack and identify
inference attack were formalized based on the 2-layer Bayes-
ian network inference and empirically evaluated. In [39], the
authors developed a likelihood-ratio test that uses allele
presence or absence responses from aWeb service called bea-
con to derive whether a target individual genome is present
in the database. In [35], the authors proposed practical strate-
gies including obscuration and access control for reducing
re-identification risks in beacons. In [16], Humbert et al. stud-
ied the use of phenotypic traits to re-identify users in
anonymized genomic databases such as openSNP and dem-
onstrated the privacy risks due to genotype-phenotype asso-
ciations. The posterior probability of a set of traits given a set
of SNPs is computed as a product of the conditional proba-
bility for each trait given each of its associated SNP. As
shown in our experiments, our method generally has a
higher identification accuracy than the Humbert’s method,
although at the cost of higher computational complexity. In
[15], it was proposed to build a Bayesian network to repre-
sent the genotype and phenotype dependencies among fam-
ily members, so that the genotype of a family member can be
inferred from the genotypes and phenotypes of his relatives.
When the correlation among genotypes are considered, the
factor graph are further adopted instead of the Bayesian net-
work to represent the familial dependencies.

Several research works [6], [20] have been conducted for
the safe release of aggregate GWAS statistics without
compromising a participant’s privacy. Their ideas were

TABLE 8
Trait-SNPAssociation

Index Trait SNP-risk allele ftkjðrÞ Okj fckjðrÞ P ðtkÞ

1 Rheumatoid arthritis rs6457617-T 0.49 2.36 0.69 0.01
rs9275406-T 0.17 2.1 0.30

2 Hypertriglyceridemia rs964184-G 0.14 3.28 0.35 0.30

3 Multiple sclerosis rs3129889-G 0.2 2.97 0.43 0.01
rs3129934-T 0.1 2.34 0.21
rs3135388-A 0.22 2.75 0.44
rs9271366-G 0.15 2.78 0.33

Fig. 8. Probability of identification: (a) all targets and (b) targets with
hypertriglyceridemia.
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based on differential privacy [3]. Differential privacy is
defined as a paradigm of post-processing the output and
provides guarantees against arbitrary attacks. A differen-
tially private algorithm provides an assurance that
the output cannot be exploited by the attacker to derive
whether or not any individual’s record is included.
The privacy parameter � controls the amount by which the
distributions induced by two neighboring data sets may
differ (smaller values enforce a stronger privacy guarantee).
A general method for achieving differential privacy for a
query f is to compute the sum of the true output and ran-
dom noise generated from a Laplace distribution. The mag-
nitude of the noise distribution is determined by the
sensitivity of the query and the privacy parameter specified
by the data owner. The sensitivity of a computation bounds
the possible change in the computation output over any
two neighboring data sets (differing at most one record).
For example, the sensitivity values of chi-square statistic
and p-value were derived in [6]. For those statistics with
large sensitivity values (e.g., the sensitivity of odds ratio is
infinity), the authors in [6] adapted the idea of releasing the
most significant patterns together with their frequencies in
the context of frequent pattern mining [1] to releaseK most
significant SNPs. In [20], the authors developed distance-
score based privacy preserving algorithms for computing
the number and location of SNPs that are significantly asso-
ciated with the trait, the significance of any statistical test
between a given SNP and the trait, correlation between
SNPs, and the block structure of correlations. In [41], the
authors developed methods for releasing differentially pri-
vate x2-statistics in GWAS while guaranteeing membership
privacy in adversarial settings [24].

8 CONCLUSIONS AND FUTURE WORK

In this paper, we studied whether and to what extend
exploiting public GWAS statistics can be used to infer pri-
vate information about general population, not limited to
GWAS participants. We first studied the construction of
Bayesian networks from publicly released GWAS catalog.
We employed the models of independence of causal influ-
ences (ICI) which assume that the causal mechanism of
each parent variable is mutually independent. We derived
a formulation from theNoisy-Ormodel, one of the ICI mod-
els, to specify the CPT using GWAS statistics, and devel-
oped a Bayesian Network construction algorithm based on
the CPT specification formulation. We proved that, the
specified CPT is accurate as long as the underlying individ-
ual-level genotype and phenotype profile data follows the
Noisy-Or model. In the experiments, we empirically vali-
dated the fitness of the Noisy-Or model. Then, we devel-
oped three inference problems based on the constructed
Bayesian network, namely trait inference given SNP geno-
type, genotype inference given trait, and trait inference
given trait. We developed efficient formulas and algorithms
to infer posterior probabilities. Finally, we empirically eval-
uated the derived inference methods for two applications.
In the first application, we showed that significant amount
of knowledge regarding traits can be inferred from the
genotype profiles. In the second application, we showed
that the probability of an individual to be identified from an
anonymized genotype database is increasing given some

traits of the individual. In the future work, we will develop
methods to enable researchers to safely release aggregate
GWAS data without compromising the anonymity of both
GWAS participants and the general population.
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