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Abstract Enabling accurate analysis of social network

data while preserving differential privacy has been chal-

lenging since graph features such as clustering coefficient

or modularity often have high sensitivity, which is different

from traditional aggregate functions (e.g., count and sum)

on tabular data. In this paper, we treat a graph statistics as a

function f and develop a divide and conquer approach to

enforce differential privacy. The basic procedure of this

approach is to first decompose the target computation f into

several less complex unit computations f1; . . .; fm connected

by basic mathematical operations (e.g., addition, subtrac-

tion, multiplication, division), then perturb the output of

each fi with Laplace noise derived from its own sensitivity

value and the distributed privacy threshold �i; and finally

combine those perturbed fi as the perturbed output of

computation f. We examine how various operations affect

the accuracy of complex computations. When unit com-

putations have large global sensitivity values, we enforce

the differential privacy by calibrating noise based on the

smooth sensitivity, rather than the global sensitivity. By

doing this, we achieve the strict differential privacy guar-

antee with smaller magnitude noise. We illustrate our

approach using clustering coefficient, which is a popular

statistics used in social network analysis. Empirical eval-

uations on five real social networks and various synthetic

graphs generated from three random graph models show

that the developed divide and conquer approach outper-

forms the direct approach.

Keywords Differential privacy � Cluster coefficient �
Divide and conquer � Social networks

1 Introduction

The privacy preserving data mining community has

expended great effort in developing sanitization techniques

to effectively anonymize data so that the sanitized data can

be published or shared with others. Researchers have pro-

posed various privacy models such as k-anonymity

(Samarati and Sweeney 1998), l-diversity (Machanavajj-

hala et al. 2006), and t-closeness (Li et al. 2007) and

developed various sanitization approaches including sup-

pression, generalization, randomization, permutation, and

synthetic data generation. Refer to a recent survey book

(Aggarwal and Yu 2008) for details. The aim is that an

honest analyst should be able to perform a variety of ad hoc

analysis and derive accurate results, whereas a malicious

attacker should be unable to exploit the published data to

infer private information about individuals. All these san-

itization approaches adopt the idea of pre-processing the

raw data such that each individual’s record or her sensitive

attribute values are hidden within a group of other indi-

viduals. However, there is no guarantee to achieve strict

privacy protection since they could not completely prevent

adversaries from exploiting various auxiliary informa-

tion—e.g., via background knowledge attacks (Du et al.
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2008; Martin et al. 2007) and composition attacks (Ganta

et al. 2008)—to breach privacy.

Differential privacy (Dwork et al. 2006b; Dwork 2011)

is a paradigm of post-processing the output of queries

such that the inclusion or exclusion of a single individual

from the data set makes no statistical difference to the

results found. Differential privacy provides formal privacy

guarantees that do not depend on an adversary’s back-

ground knowledge (including access to other databases)

or computational power. Differential privacy is achieved

by introducing randomness into query answers. Most

differential privacy research focused on theoretical studies

on enforcing differential privacy in relational databases

(Barak et al. 2007; Blum et al. 2005, 2008; Chaudhuri

and Monteleoni 2008; Dwork et al. 2006a, b; Dwork and

Smith 2010; Friedman and Schuster 2010; Ganta et al.

2008; Ghosh et al. 2009; Hay et al. 2010; Kifer and

Machanavajjhala 2011; Lee and Clifton 2012; Li et al.

2010; Sarathy and Muralidhar 2009; Xiao et al. 2011;

Ying et al. 2013). The applicability of enforcing differ-

ential privacy in real world applications has also been

studied, e.g., the application of differential privacy to

collaborative recommendation system (McSherry and

Mironov 2009), logistic regression (Chaudhuri and Mon-

teleoni 2008), publishing contingency tables (Barak et al.

2007; Xiao et al. 2010) or data cubes (Ding et al. 2011),

privacy preserving integrated queries (McSherry 2009),

computing graph properties such as degree distributions

(Hay et al. 2009) and clustering coefficient (Rastogi et al.

2009), and spectral analysis (Wang et al. 2013) in social

network analysis.

Differential privacy is usually achieved by directly

adding calibrated Laplace noise on the output of the

computation f. The calibrating process of this approach

(denoted as direct) includes the calculation of the global

sensitivity of the computation f that bounds the possible

change in the computation output over any two neighbor-

ing databases. The added noise is generated from a Laplace

distribution with the scale parameter determined by the

global sensitivity of f and the user-specified privacy

threshold �: This approach works well for traditional

aggregate functions (often with low sensitivity values) over

tabular data.

In social network analysis, various graph features such

as cluster coefficient and modularity often have a high

sensitivity (proportional to the number of nodes), which is

different from traditional aggregate functions (e.g., count

and sum) on tabular data. Furthermore, for some com-

putations such as spectral decomposition, we may not

have explicit formula to calculate global sensitivity. A

divide and conquer approach has been suggested in the

literature (Dwork et al. 2006b). The basic procedure of

this approach (denoted as D&C) is to first decompose the

target computation f into several less complex unit com-

putations f1; . . .; fm connected by basic mathematical

operations (e.g., addition, subtraction, multiplication,

division), then perturb the output of each fi with Laplace

noise derived from its own sensitivity value and the dis-

tributed privacy threshold �i; and finally combine those

perturbed fi as the perturbed output of computation

f. However, this straightforward adaptation could lead to

poor performance especially when multiplication or

division operations are involved. Furthermore, there is no

theoretical study on calculating the unbiased estimate of

f from perturbed results of fis. In this paper, we theoret-

ically examine how various operations affect the accuracy

of complex computations. When unit computations have

large global sensitivity values, we enforce the differential

privacy by calibrating noise based on the smooth sensi-

tivity (Nissim et al. 2007), rather than the global sensi-

tivity. By doing this, we achieve the strict differential

privacy guarantee with smaller magnitude noise. We

illustrate our approach by learning clustering coefficient

(a popular graph feature used in social network analysis)

from private networks. Empirical evaluations on five real

social networks and various synthetic graphs generated

from three random graph models show that the developed

divide and conquer approach outperforms the direct

approach.

2 Background

We first revisit the formal definition of differential privacy

and the classic mechanism of enforcing differential privacy

by calibrating Laplace noise based on global sensitivity in

Sect. 2.1. We then introduce the smooth sensitivity

framework (Nissim et al. 2007) when global sensitivity

yields unacceptable high noise levels in Sect. 2.2. The

smooth sensitivity framework can calibrate the instance-

specific noise with smaller magnitude than the worst-case

noise based on the global sensitivity. In Sect.2.3, we

introduce complex graph models by which we generate

various synthetic graphs for our empirical evaluation in

Sect. 5.

2.1 Differential privacy

In prior work on differential privacy, a database is treated

as a collection of rows, with each row corresponding to the

data of a different individual. Here we focus on how to

compute graph features from private network topology

described as its adjacency matrix. We aim to ensure that

the inclusion or exclusion of a link between two individuals

from the graph makes no statistical difference to the results

found.
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Definition 1 (Differential Privacy Dwork 2011) A graph

analyzing algorithm W that takes as input a graph G, and

outputs WðGÞ; preserves ðe; dÞ-differential edge privacy if

for all closed subsets S of the output space, and all pairs of

neighboring graphs G and G0 from CðGÞ;
Pr½WðGÞ 2 S� � e� � Pr½WðG0Þ 2 S� þ d; ð1Þ

where

CðGÞ ¼ fG0ðV;E0Þj9!ðu; vÞ 2 G but ðu; vÞ 62 G0g: ð2Þ

A differentially private algorithm provides an assurance

that the probability of a particular output is almost the same

whether or not any individual edge is included. The privacy

parameter pair ð�; dÞ controls the amount by which the

distributions induced by two neighboring graphs may differ

(smaller values enforce a stronger privacy guarantee).

A general method for computing an approximation to

any function f while preserving �-differential privacy is

given by Dwork et al. (2006b). The mechanism for

achieving differential privacy computes the sum of the true

answer and random noise generated from a Laplace dis-

tribution. The magnitude of the noise distribution is

determined by the sensitivity of the computation and the

privacy parameter specified by the data owner. The sensi-

tivity of a computation bounds the possible change in the

computation output over any two neighboring graphs

(differing at most one link).

Definition 2 (Global sensitivity—Dwork et al. 2006b)

The global sensitivity of a function f : D! Rd (G 2 D), in

the analysis of a graph G, is

GSf ðGÞ :¼ max
G;G0s:t:G02CðGÞ

jjf ðGÞ � f ðG0Þjj1 ð3Þ

Theorem 1 (The mechanism of adding Laplace noise—

Dwork et al. 2006b) An algorithm A takes as input a graph

G, and some �[ 0; a query Q with computing function

f : Dn ! Rd; and outputs

AðGÞ ¼ f ðGÞ þ ðY1; . . .; YdÞ ð4Þ

where the Yi is drawn i.i.d from LapðGSf ðGÞ=�Þ: The

algorithm satisfies ð�; 0Þ-differential privacy.

Differential privacy maintains composability, i.e., dif-

ferential privacy guarantees can be provided even when

multiple differentially private releases are available to an

adversary.

Theorem 2 (Composition theorem—Dwork and Lei

2009) If we have n numbers of ð�; dÞ-differentially private

mechanisms M1; . . .;Mn; computed using graph G, then

any composition of these mechanisms that yields a new

mechanism M is ðn�; ndÞ-differentially private.

Differential privacy can extend to group privacy as well:

changing a group of k edges in the data set induces a change

of at most a multiplicative ek� in the corresponding output

distribution. In this paper, we focus on the edge privacy. We

can extend the algorithm to achieve the node privacy using

the above composition theorem (Dwork and Lei 2009).

2.2 Smooth sensitivity

It may be hard to derive the global sensitivity of a complex

function or global sensitivity yields unacceptable high

noise levels. Nissim et al. (2007) introduces a framework

that calibrates the instance-specific noise with smaller

magnitude than the worst-case noise based on the global

sensitivity.

Definition 3 (Local sensitivity—Dwork et al. 2006b;

Nissim et al. 2007) The local sensitivity of a function

f : D! Rd; (G 2 D) is

LSf ðGÞ :¼ max
G0s:t:G02CðGÞ

jjf ðGÞ � f ðG0Þjj1: ð5Þ

Under the definition of local sensitivity, we only

consider the set of G0 for a given and predetermined

G, such that the inclusion or exclusion of a single link

between individuals cannot change the output distribution

appreciably. We would emphasize that the release

f(G) with noise proportional to LSf(G) cannot achieve

rigorous differential privacy as the noise magnitude might

reveal information about the database. Refer to Example 1

in Nissim et al. (2007) for an illustrative example. To

satisfy the strict differential privacy, Nissim et al. (2007)

propose the b-smooth sensitivity and show that adding

noise proportional to a smooth upper bound on the local

sensitivity yields a private output perturbation mechanism.

Definition 4 (Smooth sensitivity—Nissim et al. 2007) For

b[ 0, the b-smooth sensitivity of f : D! Rd (G 2 D), in

the analysis of a given graph G, is

S�f ;bðGÞ ¼ max
G02D

LSf ðG0Þ � e�bdðG;G0Þ
� �

ð6Þ

where d(G, G0) is the distance between graphs G and G0.

Nissim et al. (2007) introduces how to compute smooth

sensitivity based on the local sensitivity at distance

s (measuring how much the sensitivity can change when up

to s entries of G are modified).

Definition 5 (Computing smooth sensitivity) The sensi-

tivity of f at distance s is

LS
ðsÞ
f ðGÞ ¼ max

G02D:dðG;G0Þ � s
LSf ðG0Þ ð7Þ
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The b-smooth sensitivity can be expressed in terms of

LSf
(s)(G) as

S�f ;bðGÞ ¼ max
s¼0;1;...;n

e�sb max
G0:dðG;G0Þ¼s

LSf ðG0Þ
� �

¼ max
s¼0;1;...;n

e�sbLS
ðsÞ
f ðGÞ

ð8Þ

Theorem 3 shows the mechanism of calibrating noise to

the smooth bound to achieve ð�; dÞ-differential privacy.

Theorem 3 (Mechanism to add noise based on smooth

sensitivity—Nissim et al. 2007) For a function f : D!
RdðG 2 DÞ; the following mechanism achieves ð�; dÞ-dif-

ferential privacy (�[ 0; d 2 ð0; 1Þ):

AðGÞ ¼ f ðGÞ þ
S�f ;bðGÞ

a
� ðZ1; . . .; ZdÞ ð9Þ

where a ¼ �=2; b ¼ �
4ðdþlnð2=dÞÞ ; and Zi (i ¼ 1; . . .; d) is

drawn i.i.d from L(0,1). Specifically when d=1, b can be

reduced asap b ¼ �
2lnð2=dÞ :

2.3 Graph generation models

Several network models have been proposed for studying

the topological properties of real networks. Among them,

the Erdös and Rényi random graphs, the Watts and Strogatz

small-world model, and the Barabási-Albert scale-free

networks have been widely used (Costa et al. 2007). In our

work, we use the above three models with various

parameters to generate synthetic graphs for empirical

evaluation.

The Erdös and Rényi random graph (ERDdS and R &

WI 1959) is the most basic model of complex networks

which defines a graph with n vertices and a probability p of

connecting each pair of vertices. In this model, the average

degree of each node is p(n - 1) and the degree distribution

is a Poisson distribution. The global cluster coefficient of

the graph equals p. We refer to this model as the ER model

in our paper.

The small-world model of Watts and Strogatz (Watts

and Strogatz 1998) is the most popular model of random

networks with the small-world property, i.e., most vertices

can be reached from others through a small number of

edges. The Watts and Strogatz model can also generate

graphs in the presence of a large number of triangles. In

contrast, ER networks have the small-world property but a

small average clustering coefficient. We can construct a

small-world network by staring with a regular lattice of

n nodes in which each node is connected to k nearest

neighbors in each direction. Next each edge is randomly

rewired with probability p. When p nears zero, the gener-

ated graph tends to have a high number of triangles but

large distances; when p gets close to 1, the generated graph

becomes a random graph with short distances but few tri-

angles. The degree distribution for small-world networks is

similar to that of random networks, with average degree

2k. The cluster coefficient of the graph is correlated to
3ðk�1Þ

2ð2k�1Þ ð1� pÞ3 (Costa et al. 2007). Scale-free small-world

networks have received much attention recently. For

example, Caci et al. (2012) presented an algorithm to

generate graphs with small-world properties by replacing

each node of a random graph with cliques of different

sizes. Sallaberry et al. (2013) developed a model for gen-

erating social networks having community structures with

small-world and scale-free properties. In Zaidi (2013),

small-world properties were examined in a snapshot of the

facebook social network. We refer to the small-world

model of Watts and Strogatz as the WS model in our paper.

The scale-free networks of Barabási and Albert

(Barabási and Albert 1999) were proposed after the WS

model to capture the characteristics of some networks

whose degree distributions follow a power law. In scale-

free networks, some vertices are highly connected while

others have few connections. The Barab�asi and Albert

model generates a graph by starting with a set of m0 nodes;

afterwards, at each step of the construction, the network

grows with the addition of new nodes. For each new node,

m1 new edges are added between the new node and some

previous nodes. The nodes which receive the new edges are

picked following a linear preferential attachment rule so

that the most connected nodes have greater probability to

receive new nodes as neighbors. The degree distribution of

graphs generated by this model is P(d)* d-3. The average

degree is 2m1. The cluster coefficient of the graph is cor-

related to n-0.75. We refer to this model as the BA model in

our paper.

3 A divide and conquer algorithm

Our divide and conquer approach is to express a function

f in terms of unit computations f1; . . .; fm such that f can be

calculated from results of fi (i ¼ 1; . . .;m) via basic math-

ematical operations �: In this paper, we limit � as linear

combination, multiplication, and division. In our future

work, we will extend our study to other mathematical

operations such as root square and logarithm which are

often used in data mining algorithms. For each unit com-

putation fi, we introduce noise so as to maintain its dif-

ferential privacy requirement ð�i; diÞ: Specifically, we can

run the randomization mechanism with noise distribution

on each fi to achieve ð�i; diÞ-differential privacy. Using

Theorem 2, we can achieve ð�; dÞ-differential privacy of

f where � ¼
Pm

i¼1 �i and d ¼
Pm

i¼1 di:
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Algorithm 1 illustrates our divide and conquer

approach. In Line 2, the total privacy budget ð�; dÞ is

distributed among unit computations such that each fi has

a privacy threshold ð�i; diÞ: It is a challenging problem to

determine the optimal distribution of privacy budget such

that the combined output ~f achieves the optimal

approximation of f. In our paper, we simply distribute

privacy budget equally among all unit computations, i.e.,

�i ¼ 1
m
� and di ¼ 1

m
d: In our evaluation, we show that the

accuracy of the output ~f varies significantly when we

have different privacy budget distributions among fi. In

Lines 3–12, we enforce ð�i; diÞ-differential privacy on

each fi. For fi that has small global sensitivity GSfiðGÞ;
we apply Theorem 1 directly (Line 10). For fi that may

still have large global sensitivity or may not have an

explicit formula for deriving global sensitivity, we first

calculate its local sensitivity at distance s (Line 5), derive

the smooth sensitivity parameter (b, a) based on the

ð�i; diÞ (Line 6), compute its b-smooth sensitivity (Line

7), and finally enforce ð�i; diÞ-differential privacy on fi by

following Theorem 3 to calibrate noise based on the

derived smooth sensitivity (Line 8). In Line 13, we

output ð�; dÞ-differential private ~f by integrating ~fi

(i ¼ 1; . . .;m).

Next we show that our divide and conquer approach

achieves unbiased estimate of f when operations � con-

tain linear combination, multiplication, and division. For

simplicity, we choose one pair of functions, fi and fj. We

assume the true value of fi (fj) on a given data set is

a (b) and fi (fj) is perturbed by a Laplace noise Lap(0,a0)

(Lap(0,b0)). In other words, ~fi ¼ aþ Lapð0; a0Þ and ~fj ¼
bþ Lapð0; b0Þ: Lemma 1 shows that the linear

combination of Laplace noise perturbed results (~fi and ~fj)

is an unbiased estimate for the linear combination of the

original variables (fi and fj). This lemma covers the

mathematical operations of addition and subtraction.

Similarly, Lemmas 2 and 3 show the result for multi-

plication and division, respectively. We leave all proof

details in Appendix.

Lemma 1 The linear combination of two perturbed val-

ues with Laplace noise is an unbiased estimate for the

linear combination of the two original values without the

perturbations.

Eðu � ðaþ Lapð0; a0ÞÞ þ v � ðbþ Lapð0; b0ÞÞÞ
¼ Eðu � aþ v � bÞ ð10Þ

Assuming that a; b; a0; b0 2 R; and u; v 2 R are parameters

of the linear combination.

Lemma 2 The product of two perturbed values with

independent Laplace noise is an unbiased estimate for the

product of the two original values without the

perturbations.

Eððaþ Lapð0; a0ÞÞ � ðbþ Lapð0; b0ÞÞÞ ¼ Eða � bÞ ð11Þ

Assuming that a; b; a0; b0 2 R and a, b are independently

perturbed.

Lemma 3 The quotient of two perturbed results with

Laplace noise is an unbiased estimate for the quotient of

the two original values without the perturbation.

E
aþ Lapð0; a0Þ
bþ Lapð0; b0Þ

� �
¼ E

a

b

� �
ð12Þ

Assuming that a; b; a0; b0 2 R and b = 0.
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4 Learning vertex clustering coefficient

In this section, we illustrate our D&C-based differential

privacy preserving approach by learning vertex clustering

coefficient, a widely used graph metric in social network

analysis. Specifically, we show how to derive the local

sensitivity at distance s (a key step in Algorithm 1, Line 5)

for vertex clustering coefficient. We would emphasize here

that our approach works naturally with other graph metrics

such as graph modularity and data mining tasks (where

functions can be decomposed by unit computations con-

nected by basic mathematical operations).

The vertex clustering coefficient of vertex i in a graph

quantifies how close i’s neighbors are to being a clique

(complete graph). This measure was first introduced by

Watts and Strogatz (1998) to determine whether a graph is

a small-world graph.

Ci ¼
NDðiÞ
N3ðiÞ

¼ NDðiÞ
diðdi � 1Þ=2

; ð13Þ

where NDðiÞ is the number of triangles involving vertex i,

N3(i) is the number of connected triples having i as the

central vertex, and di is the degree of vertex i.

We can see that Ci can be naturally expressed as a quo-

tient of two unit computations NDðiÞ and N3(i) or a quotient

of NDðiÞ and di(di - 1)/2. In social network analysis, data

miners often query for the vector C ¼ ðC1; . . .;CnÞ0; which

contains the clustering coefficients of all the vertices. For

example, the average vertex clustering coefficient among all

the vertices, which is defined as eC ¼ 1
n

P
i Ci; is a widely

used metric for graph analysis. We can see that C can also be

expressed by two vectors, ND ¼ ðNDð1Þ; . . .;NDðnÞÞ0 and

N3 = (N3(1),…, N3(n))0. Similarly, N3 could be further

decomposed to D ¼ ðd1; . . .; dnÞ0: Table 1 shows the nota-

tions used in our paper.

Table 2 shows the global sensitivity and local sensitivity

for the vertex clustering coefficient Ci (as well as its

decomposed unit computations NDðiÞ;N3ðiÞ; di) and all

vertices’s clustering coefficients C (as well as its decom-

posed unit computations ND;N3;D). We skip the proof

details in this paper since most of them are either well known

or can be easily derived. We would point out that degree

sequence D has a low global sensitivity while other func-

tions such as ND have very high global sensitivity value.

To apply our D&C algorithm, we need to derive the

formulas of the local sensitivity at distance s for all above

computations. We show our derived results in the

remainder of this section and leave all proof details in

Appendix. Result 1 shows the formula of the local sensi-

tivity at distance s for the vertex clustering coefficient Ci

and Result 2 shows the formulas of the local sensitivity at

distance s for NDðiÞ and N3(i).

Result 1 The local sensitivity at distance s for the vertex

clustering coefficient Ci is

LS
ðsÞ
Ci
ðGÞ ¼

2
di�s

for di � s [ 2

1 otherwise

�
ð14Þ

Result 2 (Nissim et al. 2007) The local sensitivity at

distance s for NDðiÞ is

LS
ðsÞ
NDðiÞðGÞ ¼ max

i 6¼j; j2½n�
cijðsÞ ð15Þ

where

cijðsÞ ¼ min jNgbðiÞ \ NgbðjÞj þ sþ minðs; bijÞ
2

� �
; n� 2

� �

and bij ¼
P

k2½n� aik � akj is the number of half-built tri-

angles involving edge (i, j).

The local sensitivity at distance s for N3(i) is

LS
ðsÞ
N3ðiÞðGÞ ¼ minðdi þ s� 1; n� 2Þ ð16Þ

Result 3 shows the formula of the local sensitivity at

distance s for the clustering coefficient vector C, and Result

Table 1 Notations of graph metrics

The original graph with n nodes and m edges G(n, m)

Adjacent matrix of G A

An entry in A aij

The degree of a node i di

The maximum node degree in G dmax

The clustering coefficient of a node i Ci

The set of the neighboring nodes of node i Ngb(i)

Number of triangles involving node i NDðiÞ
Number of connected triples (i as the central node) N3(i)

The vector of all Ci C

The vector of all di D

The vector of all NDðiÞ ND

The vector of all N3(i) N3

Table 2 Global sensitivity and local sensitivity of graph metrics

Function f GSf LSf

Ci 1 2/di

NDðiÞ n - 2 maxaij¼1jNgbðiÞ \ NgbðjÞj
N3(i) n - 2 di - 1

di 1 1

C n - 1 dmax

ND 3(n - 2) 3maxaij¼1jNgbðiÞ \ NgbðjÞj
N3 2n - 4 2dmax - 2

D 2 2

930 Y. Wang et al.
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4 shows the formulas of the local sensitivity at distance

s for vector ND and N3.

Result 3 The local sensitivity at distance s for C ¼
ðC1; . . .;CnÞ0 is

LS
ðsÞ
C ðGÞ ¼ max

i 6¼j; i;j2½n�
min dmaxþ

sþminðs;bijÞ
2

� �
;n� 1

� �� 	

ð17Þ

where bij ¼
P

k2½n� aik � akj is the number of half-built

triangles involving edge (i, j)

Result 4 The local sensitivity at distance s for ND is

LS
ðsÞ
ND
ðGÞ ¼ 3 � max

i 6¼j; j2½n�
cijðsÞ

where

cijðsÞ ¼ min jNgbðiÞ \ NgbðjÞj þ sþ minðs; bijÞ
2

� �
; n� 2

� �

and bij ¼
P

k2½n� aik � akj is the number of half-built tri-

angles involving edge (i, j). (This result appeared in Nissim

et al. 2007.)

The local sensitivity of N3 at distance s is

LS
ðsÞ
N3
ðGÞ ¼ max

i 6¼j; i;j2½n�

(
2n� 4;min

 
dmax þ dsencondmax

�2þ sþminðs; bijÞ
2

� �!)

where bij ¼
P

k2½n� aik � akj is the number of half-built

triangles involving edge (i, j).

For vertex clustering coefficient Ci, we have two

decomposition strategies: (NDðiÞ; N3ðiÞ) or ðNDðiÞ; diÞ:
Similarly for clustering coefficient vector C, we can also

have two decomposition strategies: (ND; N3) or (ND; D).

When we apply the second decomposition strategy, we use

the global sensitivity of di or D because they are very

small. However, we should adjust our estimate of di(di -

1)/2, as shown in Lemma 4, if we use the same ~di twice in

the calculation. Of course, we can query twice to get two

perturbed values of di and calculate the unbiased estimate

of di(di - 1)/2 based on Lemma 2. In this case, two queries

of di should split the privacy budget assigned to di. This

example illustrates the importance of deriving unbiased

estimate of f from its perturbed values of unit

computations.

Lemma 4 The unbiased estimate for the product of the

linear combinations of the same perturbed value with

Laplace noise is

Eððu1 � aþ v1Þðu2 � aþ v2ÞÞ ¼ Eððu1 � ~aþ v1Þðu2 � ~a
þ v2ÞÞ � u1 � u2 � a

02

Assuming that a 2 R and ~a ¼ aþ Lapð0; a0Þ:

The time complexity for computing the cluster coeffi-

cient Ci for node i is O(di
2), where di denotes the degree of

node i. In the worst case where the node degree may be as

large as n - 1, the time complexity is O(n2) for computing

the cluster coefficient of one node and O(n3) for computing

the cluster coefficients of all vertices. Since the time

complexity of perturbing one output with the Laplacian

noise is O(1), enforcing differential privacy by the direct

approach has no influence on the time complexity of the

original algorithm of computing cluster coefficient. Fur-

thermore, our divide and conquer approach, which

decomposes the computation f into m less complex unit

computations f1; . . .; fm connected by basic mathematical

operations, has the same time complexity as the direct

approach because m is often a small constant. Note that it

takes constant time for the algorithm to compute b-smooth

sensitivity S�fi;bðGÞ (Line 7 in Algorithm 1). This is because

we can compute the maximum value by calculating the

derivative on the right-hand side of Eq. (8) rather than

iteratively calculating the value for each distance s. In the

characteristics of the function e-sbLSf
s(G), the e-sb part

decreases exponentially as s increases while the LSf
s(G) part

increases polynomially, which ensures the strategy of

computing the derivative feasible.

5 Empirical evaluation

In this section, we conduct evaluations to compare the

utility of the direct approach and the D&CD approach on

five real graphs and several synthetic graphs generated with

three graph models, ER model, WS model and BA model

(refer to Sect.2.3).

The five real graphs are denoted respectively as GrQc,

Enron, Polbooks, Polblogs, and YesIWell. GrQc is the

Table 3 General relativity and quantum cosmology collaboration

network dataset statistics

Number of nodes 5,242

Number of edges 28,980

Nodes in the largest connected component 4,158

Edges in the largest connected component 26,850

Average clustering coefficient 0.5296

Number of triangles 48,260

Fraction of closed triangles 0.6298

Diameter 17
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General Relativity and Quantum Cosmology collaboration

network from the SNAP Stanford (Leskovec 2013). Table 3

gives some published statistics of the GrQc dataset. We

mainly use the GrQc graph data for comparing the utility

preservations of different approaches in Sect. 5.1 and

exploring the privacy budget distribution in Sect. 5.2. En-

ron1 is an email network collected and prepared by the

CALO Project and it has 148 nodes and 869 edges; Pol-

books2 is a network of books about US politics published

around the time of the 2004 presidential election and sold by

Amazon.com and it has 105 nodes and 441 edges; Polblog

(Adamic and Glance 2005) is a network of hyperlinks

between weblogs on US politics; YesIWell is a human

physical activities-related social network dataset with 185

nodes and 684 edges, which is part of the data gained from

the YesIWell study3 conducted in 2010–2011 as collabo-

ration among several health laboratories and universities to

help people maintain active lifestyles and lose weight.

Synthetic graphs are generated using the software Ge-

phi4 with the Complex Generators plugin. For each graph

model (ER, WS, and BA), we generate several graphs by

varying graph generation parameters. Table 4 shows some

basic characteristics of the generated graphs, where

n denotes the number of nodes, m denotes the number of

edges, �c is the average cluster coefficient, nD is the total

number of triangles in the graph, frD is the fraction of the

closed triangles, which is defined as the total number of

triangles divided by the total number of length of two

paths. The generation parameters for the ER model are

denoted as (n, p), those for the WS model as (n, k, p) and

those for the BA model as (n, m0, m1) (refer to Sect. 2.3).

For all synthetic graphs, we fix the number of nodes as

1,000.

5.1 Utility

We compare our divide and conquer approach with the

direct approach that directly adds calibrated Laplace noise

on the output of the computation of f. For vertex cluster

coefficient Ci, to examine how different decomposition

strategies affect the accuracy of the final output ~CðiÞ; we

include evaluation results on two decomposition strategies:

(NDðiÞ;N3ðiÞ) and (NDðiÞ; di).

Table 5 shows comparisons of these three methods,

denoted as direct, D&CN3ðiÞ, and D&Cdi
; respectively. In

our experiments, we fix d = 0.01 and vary � 2
f0:01; 0:1; 1; 10g: We choose the node with the largest

degree (di = 81) for the vertex cluster coefficient. For each

of three methods with every privacy setting, we repeat the

randomization process for 3,000 times. We report the the

mean and standard deviation of the absolute error between
~Ci and Ci in Table 5.

Table 4 Dataset Statistics

Graphs n m �c nD frD Generation parameters

ER1 1,000 25,094 0.0496 20,787 0.0496 (1,000, 0.05)

ER2 1,000 50,129 0.1002 167,671 0.1002 (1,000, 0.1)

ER3 1,000 249,755 0.5000 20,768,657 0.4999 (1,000, 0.5)

WS1 1,000 25,000 0.0661 27,153 0.0659 (1,000, 50, 0.7)

WS2 1,000 25,000 0.1280 52,354 0.1272 (1,000, 50, 0.5)

WS3 1,000 25,000 0.3886 158,301 0.3863 (1,000, 50, 0.2)

WS4 1,000 50,000 0.4080 672,623 0.4069 (1,000, 100, 0.2)

WS5 1,000 250,000 0.5679 23,694,389 0.5696 (1,000, 500, 0.2)

BA1 1,000 24,975 0.0759 64,660 0.1274 (1,000, 50, 25)

BA2 1,000 49,950 0.1462 443,582 0.2189 (1,000, 100, 50)

BA3 1,000 249,750 0.6171 31,524,992 0.6748 (1,000, 500, 250)

BA4 1,000 4,995 0.0156 617 0.0308 (1,000, 10, 5)

BA5 1,000 5,975 0.0483 20,355 0.4162 (1,000, 50, 5)

BA6 1,000 9,450 0.1068 162,689 0.7614 (1,000, 100, 5)

BA7 1,000 127,250 0.6459 20,711,072 0.9861 (1,000, 500, 5)

Enron 151 869 0.5018 1,700 0.3441 –

Polbook 105 441 0.4875 560 0.3484 –

Polblog 1,222 16,714 0.3203 101,043 0.2260 –

YesIWell 185 342 0.2018 223 0.1710 –

1 http://www.cs.cmu.edu/*enron/.
2 http://www.personal.umich.edu/*mejn/netdata/.
3 http://aimlab.cs.uoregon.edu/smash/.
4 https://gephi.org/.
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Similarly for clustering coefficient vector C, we use

D&CN3
and D&CD to denote divide and conquer approa-

ches based on two decomposition strategies. We set �0 here

with the magnitude of n � �; where � 2 f0:01; 0:1; 1; 10g:
As a result, each entry of the vector achieves the same

ð�; dÞ-differential privacy as the previous experiment.

Table 6 shows our comparisons.

Note that in our experiments, we also use the b-

smooth sensitivity in the direct approach. This is because

the utility is significantly lost if we use the global sen-

sitivity. For example, if we use the global sensitivity for

Ci when � ¼ 1; the error is 0.3558 ± 0.1915, which is

significantly larger than 0.0338 ± 0.0332 (shown in

Table 5) of the direct approach using the smooth

sensitivity.

We have following observations from our evaluation

results. First, in general, the D&C approach achieves

equivalent utility as, if not better than, that of the direct

approach. This result indicates that we can still enforce

differential privacy by decomposing a complex function

into unit computations even though the complex func-

tion may have a large global sensitivity or may not

have an explicit formula of its global sensitivity. Sec-

ond, for the D&C approach, querying for the degree

sequence D instead of the N3 vector will probably lead

to better utility. This is because the degree sequence

has a low global sensitivity. Third, under the same

privacy threshold, it is much better to query for the

vector of all the clustering coefficients at once rather

than to query for the vertex clustering coefficient one

by one.

5.2 Distribute privacy budget

Note that in our previous experiments, we adopted a simple

strategy, i.e., distributing privacy budget equally among

unit computations. One conjecture is that the

D&C approach would achieve much better utility preser-

vation if we have a better strategy of distributing privacy

budget. For example, in our D&CD method that obtains the

clustering coefficient vector C by querying for the vectors

ND and D, the sensitivity magnitude of the vector ND is

much larger than that of the vector D. Hence we expect to

achieve better utility if we distribute more privacy budget

to ND than to D. On the other hand, one characteristic of the

division is that the denominator is more sensitive than the

numerator, having more influence on the quotient result. As

a result, the denominator vector D may need more privacy

budget under certain conditions.

Figure 1 shows how preservation of utility (in terms of

approximation error shown as X axis) varies when we

change the ratio of the privacy budget on ND (numerator)

and the privacy budget on D (shown as Y axis) when we

apply our D&CD method with the total budget � ¼
0:1; 1:0; 10: The red lines correspond to the direct method

and the blue curves correspond to the D&CD method. The

points of those blue curves that are under the red line show

the privacy budget distributions with which the D&CD

method outperforms the direct method. Our evaluation

results (shown in the third column of Table 6) correspond

to the first point (with ratio = 1) in each figure. In our

future work, we will study the use of Newton iterative

method to find out the optimal ratio so that we can achieve

optimal utility preservation in our divide and conquer

approach.

5.3 Evaluation on other real graphs and synthetic

graphs

In this section, we conduct evaluations to compare the

utility of the direct approach and the D&CD approach on

the other four real graphs and various synthetic graphs

generated by the three graph models (ER, WS, and BA). In

all our experiments, we fix d = 0.01 and set �0 here with

the magnitude of n � �; where � 2 f0:01; 0:1; 1; 10g: As a

result, each entry of the vector achieves the same ð�; dÞ-
differential privacy as the previous experiment. For the

D&CD approach, we simply distribute privacy budget

equally, i.e., setting the distribution ratio of privacy budget

as 1. As illustrated in Sect. 5.2, we would achieve even

better utility preservation for the D&C approach when we

adopt a better strategy of distributing privacy budget.

The evaluation results are shown in Table 7. Specifi-

cally, we have the following observations.

Table 5 Mean and standard deviation (mean ± SD) of the absolute

error for the clustering coefficient of one node (d = 0.01)

� Direct D&CN3ðiÞ D&Cdi

0.01 0.4986 ± 0.1369 0.3656 ± 0.1568 0.4651 ± 0.1510

0.1 0.4695 ± 0.1594 0.3578 ± 0.1800 0.3772 ± 0.1942

1.0 0.0338 ± 0.0332 0.0629 ± 0.0611 0.0549 ± 0.0533

10 0.0036 ± 0.0036 0.0062 ± 0.0057 0.0055 ± 0.0053

Table 6 Mean and standard deviation (mean ± SD) of all the

absolute error for the clustering coefficient vector (d = 0.01)

� direct D&CD D&CN3

0.01 0.3257 ± 0.0045 0.2971 ± 0.0045 0.3269 ± 0.0040

0.1 0.1043 ± 0.0021 0.1069 ± 0.0028 0.1398 ± 0.0029

1.0 0.0118 ± 0.0002 0.0145 ± 0.0005 0.0182 ± 0.0006

10 0.0012 ± 0.0001 0.0015 ± 0.0001 0.0019 ± 0.0001
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– For the ER model with parameters n and p, ER1, ER2,

and ER3 are generated with the same number of nodes

n = 1,000 with increasing p values, 0.05, 0.1, 0.5. The

number of edges (m), the average cluster coefficient (�c),

and the fraction of triangle (frD) of these three graphs

increase with the increasing of p. For the direct

approach, we can see that the entrywise absolute error

increases with p. On the contrary, the entrywise

absolute error decreases for the D&CD approach. Thus,

we can conclude that the D&CD approach tends to

achieve much better utility preservation than the direct

approach for ER random graphs. The utility of D&CD

approach increases as p increases.

– For the WS model with parameters n, k and p, from

Sect. 2.3, we know that the graph tends to have more

triangles and larger distance when p is near 0 and the

graph is more random with less triangles and shorter

distance when p approaches 1. WS1, WS2, and WS3

are generated with the same parameters n and k but

decreasing p as 0.7, 0.5 and 0.2, respectively. These

three graphs have the same density but increasing �c and

frD. We see no clear trend of the absolute entrywise

error change for both approaches. WS3, WS4, and WS5

are generated with the same parameters n and p (0.2)

but increasing k as 50, 100, and 500, respectively. As a

result, these three graphs have increasing m; �c; and frD.

For the direct approach, we can see that the entrywise

absolute error increases with k whereas the entrywise

absolute error decreases for the D&CD approach. Thus,

we can conclude that the D&CD approach tends to
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Fig. 1 Average entrywise absolute error change with the distribution ratio of �0; given varying �; d. a � ¼ 0:01; d ¼ 0:01. b � ¼ 0:1; d ¼ 0:01.

c � ¼ 1:0; d ¼ 0:01. d � ¼ 10; d ¼ 0:01
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achieve much better utility preservation than the direct

approach among WS small-world graphs and the utility

of the D&CD approach increases as k increases.

– For the BA model with parameters n, m0, and m1, BA1,

BA2, and BA3 are generated with the same parameter

n and increasing m1 as 25, 50, and 250, respectively.

Recall that in the BA model m1 denotes the number of

newly added edges between each new node and

existing nodes. Note that when the ratio between m0

and m1 is fixed, the increase of m1 indicates the

increases of m; �c; and frD. For the direct approach, we

can see that the entrywise absolute error increases with

the increase of m1, whereas the entrywise absolute error

decreases for the D&CD approach. Thus, we can

conclude that the D&CD approach tends to achieve

much better utility preservation than the direct

approach among BA small-world graphs with large

density.

– For the BA model with parameters n, m0 and m1, BA4,

BA5, BA6, and BA7 are generated with the same

parameters n and m1 = 5 but increasing m0 as

10, 50, 100, and 500, respectively. Recall that in the

BA model m0 denotes the number of nodes in the

starting set. When m1 is fixed, the increase of m0

indicates the increases of �c and frD: We can see that the

utility of the D&CD approach is still better than that of

the direct approach but not as significant as the graphs

BA1, BA2, and BA3. The absolute entrywise error for

the D&CD approach increases as parameter m0

increases, which shows the same trend as that of the

direct approach. Thus, we can conclude that the D&CD

approach still tends to achieve better utility preserva-

tion than the direct approach among BA small-world

graphs with low density but its advantage decreases

when m0 is larger.

– For all four real networks (Enron, Polbook, Polblog and

YesIWell), we can see that the D&CD approach

outperforms the direct approach. The extent of the

advantage of the D&CD approach is similar to that

observed in BA graphs with low density (BA4, BA5,

BA6, and BA7).

In summary, we draw the following conclusions. First,

the D&CD approach outperforms the direct approach in all

graphs (15 synthetic graphs and 4 real graphs). Second, the

D&CD approach shows overwhelming superiority in all

three graphs generated by the ER model, all five graphs

generated by the WS model, and the first three graphs

(BA1, BA2, BA3) from the BA model. In the above 11

graphs, the entrywise error of the output of D&CD

approach tends to be much smaller (by several orders of

magnitude) than that of the direct approach. Third, for real

graphs (Enron, Polbook, Polblog, and YesIWell) and the

Table 7 The average entrywise absolute error for the clustering coefficient vector (d = 0.01)

Graphs � ¼ 0:01 � ¼ 0:1 � ¼ 1:0 � ¼ 10

Direct D&CD Direct D&CD Direct D&CD Direct D&CD

ER1 0.4920 0.0753 0.2499 0.0016 0.0438 4.08e-5 0.0055 4.07e-6

ER2 0.4947 0.0281 0.3402 2.56e-4 0.0793 2.58e-5 0.0096 2.57e-6

ER3 0.4968 0.0013 0.4697 1.27e-4 0.2832 1.26e-5 0.0393 1.27e-6

WS1 0.4730 0.0472 0.2633 0.0011 0.0423 5.78e-5 0.0049 5.81e-6

WS2 0.4844 0.0904 0.2522 0.0010 0.0455 9.09e-5 0.0047 9.10e-6

WS3 0.4830 0.0721 0.2881 0.0015 0.0424 1.55e-4 0.0042 1.54e-5

WS4 0.4864 0.0162 0.3729 7.55e-4 0.0823 7.55e-5 0.0083 7.57e-6

WS5 0.4967 0.0015 0.4682 1.54e-4 0.2769 1.55e-5 0.0382 1.55e-6

BA1 0.4856 0.1270 0.3389 0.0042 0.0754 4.26e-4 0.0102 4.53e-5

BA2 0.4890 0.0189 0.4005 0.0019 0.1274 1.93e-4 0.0164 1.93e-5

BA3 0.4969 0.0033 0.4739 3.28e-4 0.3071 3.29e-5 0.0499 3.30e-6

BA4 0.1899 0.1377 0.0623 0.0141 0.0094 5.51e-4 0.0011 5.48e-5

BA5 0.2136 0.1433 0.1110 0.0180 0.0182 0.0025 0.0023 2.45e-04

BA6 0.2473 0.1573 0.1634 0.0370 0.0334 0.0057 0.0043 5.86e-04

BA7 0.4792 0.2297 0.4357 0.1813 0.2012 0.0550 0.0284 0.0063

Enron 0.4758 0.4535 0.4283 0.1873 0.2026 0.0436 0.0253 0.0048

Polbook 0.4968 0.4860 0.4263 0.3442 0.1492 0.0438 0.0163 0.0045

Polblog 0.4025 0.2808 0.3537 0.1118 0.1392 0.0336 0.0161 0.0040

YesIWell 0.2253 0.2210 0.1866 0.1586 0.0583 0.0247 0.0065 0.0026
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last four graphs (BA4, BA5, BA6 and BA7) generated with

the BA model, the advantage of the D&CD approach is still

obvious and the entrywise error of the output of D&CD

approach is still smaller (by 10 % with small � or by one

order of magnitude with large � than that of the direct

approach. We observe that the four real networks and the

last four BA graphs are relatively sparse and most nodes

tend to have a very small magnitude of degree (less than

10) and hence a small number of triangles. When cali-

brating the noises to ND and D in our D&CD approach, the

influence due to the distortion is large. As a result, the

advantage of our D&CD approach decreases when the

graphs have low density.

6 Conclusion and future work

Enabling accurate analysis of graph data while preserving

differential privacy is of great importance and poses great

challenge due to potential high global sensitivity. In this

paper, we have presented a divide and conquer approach that

can be used to enforce differential privacy for complex

functions. We have conducted theoretical analyses and

extensive empirical evaluations to show that the developed

divide and conquer approach generally outperforms the

approach of directly enforcing differential privacy in terms

of utility preservation. This result is especially promising for

data mining or exploration tasks with interactive processes,

in which a user can adaptively query the system about the

data. The user now has options of reusing previous inter-

mediate query results rather than submitting to the system

‘‘new’’ queries that can be expressed by previous ones.

There are some other aspects of this work that merit

further research. Among them, we will continue the line of

this research by investigating how to enforce differential

privacy for other complex functions or social network

analysis tasks. For functions that we cannot compute the

smooth sensitivity efficiently or explicitly, Nissim et al.

(2007) proposed an approximation method that computes

the b-smooth upper bound on the local sensitivity of these

functions and developed a sample-aggregation framework

for a large class of functions. We will evaluate those func-

tions based on the sample-aggregation framework. We will

exploit the use of correlations among unit computations to

further reduce noise and enhance accuracies of computation

outputs. Our goal was to identify (optimal) decomposition

strategies and (optimal) budget privacy distribution. Finally,

we will study non-interactive graph data release mecha-

nisms, i.e., we use the derived differentially private graph

statistics to generate synthetic graphs for release.
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A Proof

Proof of Lemma 1

Eðu � ðaþ Lapð0; a0ÞÞ þ v � ðbþ Lapð0; b0ÞÞÞ
¼ Eðu � aþ v � bÞ þ u � EðLapð0; a0ÞÞ þ v � EðLapð0; b0ÞÞ

Since E(Lap(0, a0)) = 0 and E(Lap(0, b0)) = 0, we have

Eðu � ðaþ Lapð0; a0ÞÞ þ v � ðbþ Lapð0; b0ÞÞÞ
¼ Eðu � aþ v � bÞ

Proof of Lemma 2

Eððaþ Lapð0; a0ÞÞ � ðbþ Lapð0; b0ÞÞÞ
¼ Eða � bþ b � Lapð0; a0Þ
þ a � Lapð0; b0Þ þ Lapð0; a0Þ � Lapð0; b0ÞÞ
¼ Eða � bÞ þ b � EðLapð0; a0ÞÞ
þ a � EðLapð0; b0ÞÞ þ EðLapð0; a0Þ � Lapð0; b0ÞÞ

E(Lap(0, a0)) = E(Lap(0, b0)) = 0; besides, EðLap

ð0; a0Þ � Lapð0; b0ÞÞ ¼ EðLapð0; a0ÞÞ � EðLapð0; b0ÞÞ since

a, b are independently perturbed with Laplace noise; hence

Eððaþ Lapð0; a0ÞÞ � ðbþ Lapð0; b0ÞÞÞ ¼ Eða � bÞ

Proof of Lemma 3

E
aþ Lapð0; a0Þ
bþ Lapð0; b0Þ

� �
¼ E

a

b

� �
þ E

aþ Lapð0; a0Þ
bþ Lapð0; b0Þ �

a

b

� �

Since E(Lap(0,a0)) = 0 and E(0, Lap(b0)) = 0, we have

E
aþ Lapð0; a0Þ
bþ Lapð0; b0Þ �

a

b

� �

¼ E
ðaþ Lapð0; a0Þb� aðbþ Lapð0; b0ÞÞÞ

b � ðbþ Lapð0; b0ÞÞ

� �

¼ E
b � Lapð0; a0Þ

b � ðbþ Lapð0; b0ÞÞ

� �
� E

a � Lapð0; b0Þ
b � ðbþ Lapð0; b0ÞÞ

� �

¼ 0

Proof of Result 1 To derive LS
ðsÞ
Ci
ðGÞ; we first consider the

case for s = 0, i.e., LSCi
ðGÞ:

Let G and G0 respectively denote the original graph

G and its neighbor graph by deleting an edge from G. For a

given node i: let NDðiÞ and N3(i) denote the attributes of i in

G, while N 0DðiÞ and N03(i) denote the same attributes in G0.
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By definition, we have 0�NDðiÞ�N3ðiÞ ¼ 2=ðdiðdi � 1ÞÞ;
when deleting an edge from G;NDðiÞ would be decreased

by at most di - 1; while N3(i) would be decreased by

exactly di - 1. Therefore,

LSCi
ðGÞ ¼ NDðiÞ

diðdi � 1Þ=2
� N 0DðiÞ

diðdi � 1Þ=2� ðdi � 1Þ ð18Þ

when 0�NDðiÞ� di � 1; we have

LSCi
ðGÞ� NDðiÞ

diðdi � 1Þ=2
� di � 1

diðdi � 1Þ=2
¼ 2=di

when di � 1�NDðiÞ� diðdi � 1Þ=2; we have

LSCi
ðGÞ� NDðiÞ

diðdi � 1Þ=2
� NDðiÞ � ðdi � 1Þ

diðdi � 1Þ=2� ðdi � 1Þ

¼ 2

di � 2
� 4NDðiÞ

diðdi � 1Þðdi � 2Þ

� 2

di � 2
� 4ðdi � 1Þ

diðdi � 1Þðdi � 2Þ ¼ 2=di

So that LSCi
ðGÞ ¼ 2

di
:

In general case, for s [ 0, we have (Eq. 7),

LS
ðsÞ
Ci
ðGÞ ¼ max

G02D:dðG;G0Þ � s
LSCi
ðG0Þ ¼ 2

di � s

for di - s [ 2; and LS
ðsÞ
Ci
ðGÞ ¼ GSCi

ðGÞ ¼ 1 otherwise.

Proof of Lemma 4 Since E(Lap(0,a0)) = 0 and

EðLap2ð0; a0ÞÞ ¼ a
02; ~a ¼ aþ Lapð0; a0Þ; therefore

Eððu1 � ~aþ v1Þðu2 � ~aþ v2ÞÞ
¼ Eððu1 � aþ v1Þðu2 � aþ v2ÞÞ
þ ðu1 � ðu2 � aþ v2Þ þ u2 � ðu1 � aþ v1ÞÞEðLapð0; a0ÞÞ
þ u1 � u2 � EðLap2ð0; a0ÞÞ
¼ Eððu1 � aþ v1Þðu2 � aþ v2ÞÞ þ u1 � u2 � a02

Proof of Result 3 We first consider the situation of s = 0,

LSCðGÞ ¼ max
aij¼1

�
2

di

þ 2

dj

þ
X

aikajk¼1

1

dkðdk � 1Þ=2

	

� max
aij¼1

2

di

þ 2

dj

þ 2ðdmax � 1Þ
dkðdk � 1Þ

� 	

� 2
1

2
þ 1

2
þ 2ðdmax � 1Þ

2 � ð2� 1Þ

� �
¼ dmax

LSC
(s)(G) = LSC(G) ? s for s B bij because we may add

one edge to complete a half-built triangle involving edge

(i, j) which makes the sensitivity increased by at most one;

meanwhile, LS
ðsÞ
C ðGÞ ¼ LSCðGÞ þ bsþbij

2
c for s [ bij

because we have to add two edges to form a triangle to

make the sensitivity increased by one, after completing all

the bij half-built triangles involving edge (i, j). Besides,

LSC
(s)(G) B GSC(G) = n - 1. So we have Eq. (17).

Proof of Result 4. In addition to the Proof of Result 2

given in Nissim et al. (2007), LS
ðsÞ
ND
ðGÞ ¼ 3 �

maxi 6¼j; j2½n� cijðsÞ because each of the two entries corre-

sponding to vertex i and j will be decreased by at most

maxi 6¼j; j2½n� cijðsÞ; when edge (i, j) is deleted from

G. Besides, there are maxi 6¼j; j2½n� cijðsÞ other entries whose

values will be decreased by one, corresponding to the

neighbors in common by vertex i and j.

For N3, we first consider the situation of s = 0,

LSN3
ðGÞ ¼max

aij¼1

�
diðdi� 1Þ

2
�ðdi� 1Þðdi� 2Þ

2
þ :djðdj� 1Þ

2

�ðdj� 1Þðdj� 2Þ
2

	
� max

aij¼1
fdi� 1þ dj� 1g�dmax

þdsecondmax� 2

In general case, LS
ðsÞ
N3
ðGÞ ¼ LSN3

ðGÞþ s for s B bij and

LS
ðsÞ
N3
ðGÞ ¼ LSN3

ðGÞþ bsþbij

2
c for s [ bij which are similar to

those of LSC
(s)(G), and LS

ðsÞ
N3
ðGÞ�GSN3

ðGÞ ¼ 2n� 4. So we

have the form for LS
ðsÞ
N3
ðGÞ:
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