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Abstract. Message propagation via retweet chain can be regarded as
a social contagion process. In this paper, we examine burst patterns in
retweet activities. A burst is a large number of retweets of a partic-
ular tweet occurring within a certain short time window. The occur-
ring of a burst indicates the original tweet receives abnormally high
attentions during the burst period. It will be imperative to character-
ize burst patterns and develop algorithms to detect and predict bursts.
We propose the use of the Cantelli’s inequality to identify bursts from
retweet sequence data. We conduct a comprehensive empirical analysis of
a large microblogging dataset collected from the Sina Weibo and report
our observations of burst patterns. Based on our empirical findings, we
extract various features from users’ profiles, followship topology, and
message topics and investigate whether and how accurate we can predict
bursts using classifiers based on the extracted features. Our empirical
study of the Sina Weibo data shows the feasibility of burst prediction
using appropriately extracted features and classic classifiers.

1 Introduction

Microblogging, such as Twitter and Sina Weibo, has attracted a huge number of
users and becomes increasingly popular. In Twitter, a user can tweet any message
within 140-character limit or share pictures, follow any interesting users, and
comment or retweet messages that she received from her followees. A tweet can
reach the immediate followers of the owner user and can further reach other users
when retweeted by some followers. Hence the retweeting mechanism empowers
users to spread their ideas beyond the research of the original tweet’s followers.
Message propagation via retweet chain can be regarded as a social contagion
process.
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In this paper, we examine burst patterns in retweet activities. A burst is a
large number of retweets of a particular tweet occurring within a certain short
time window. We can consider a burst as a spike and its duration is often short
as compared to the surrounding non-burst durations. The occurring of a burst
indicates the original tweet receives abnormally high attentions during the burst
period. As a result, it will be imperative to characterize burst patterns and
develop algorithms to detect and predict bursts.

Many tweets receive little interests in their life cycle and have no burst at all.
The propagation of those no-burst tweets often experiences only two stages: low
growth and long extinction. However, for tweets that receive significant atten-
tion and spread widely in microblogging sites, their propagation often expe-
rience eruption, continuance and extinction. Some tweets have a distribution
with single-burst whereas other tweets have a distribution with multi-burst. The
single-burst indicates that the original tweet receives wide intensive attention in
its short period of eruption and then fades away gradually without raising any
further significant attention. On the contrary, some tweets may receive intensive
attention in several different periods of times during their life cycle due to some
triggering event. As a result, they have a distribution with multi-burst. The
multi-burst is often characterized by slowly alternating phases of near steady
state behavior and rapid spikes. The propagation of multi-burst tweets has five
cyclic stages: eruption, continuance, decay, dormant and reflourish, within their
(often long) life durations.

In this paper, we propose the use of the Cantelli’s inequality to identify
bursts from retweet sequence data. We treat bursts as outliers (i.e., significantly
different from the average) in retweet sequence data. We then conduct a compre-
hensive empirical study of burst pattern using the Sina Weibo data and examine
various factors, including tweet users and topics, that may have effects on burst.
We extract various features from users’ profiles, followship topology, and mes-
sage topics and investigate whether and how accurate we can predict bursts
using classifiers based on the extracted features.

2 Burst Characterization

We define the life duration of a particular tweet as the time period from when
it was originally posted to when it was lastly retweeted. We convert the retweet
frequency information of a given tweet into a time series where each value indi-
cates the number of occurrence of retweets during the time window. The size
of the time window could be minutes, hours, or even days dependent on the
application. Formally, denote ti the ith time window after the original tweet is
posted, and xti the number of retweets in the ith time window. The retweet time
series is defined by X = xt1 , xt2 , . . . , xtn . A burst is a large number of retweets
occurring within certain time windows of the tweet’s life duration. We define the
burst duration of the tweet as the total number of time windows for which all
bursts last.
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Fig. 1. The retweeting time series of a tweet

Figure 1 shows an example of a retweet series with three bursts: t1 to t2 for the
first burst, t3 to t4 for the second burst, and t5 to t6 for the third burst. The retweet-
ing sequence often has a much longer non-burst duration which includes the period
before the the first burst, the periodbetween two consecutive bursts, and the period
after the last burst. We propose the use of the Cantelli’s inequality to identify those
bursts.

Theorem 1. (Cantelli’s inequality) Let X be a random variable with finite
expected value μ and finite non-zero variance σ2. Then for any real number λ

Pr(X − μ ≥ λ)

{
≤ σ2

σ2+λ2 if λ > 0,

≥ 1 − σ2

σ2+λ2 if λ < 0.
(1)

The Cantelli’s inequality is a generalization of Chebyshev’s inequality in the
case of a single tail. When λ > 0, we have Pr(X − μ ≥ λσ) ≤ 1

1+λ2 . We treat as
outliers those values that are more than λ standard deviations σ away from the
mean μ. The number of outliers are no more than 1/(1 + λ2) of the distribution
values. Those outliers form the bursts in the retweeting sequence. In our paper,
we set the λ value as 2.

3 Empirical Evaluation of Burst Patterns

We conduct an empirical study using the WISE 2012 Challenge Data 1. The
WISE 2012 Challenge is based on a dataset collected from the Sina Weibo, one of
the most popular Microblogging service in China. In the data, content of tweets
are removed and some tweets are annotated with events. For each event, the
terms that are used to identify the event are given. Each tweet includes the basic
information such as time, user ID, message ID, mentions (user IDs appearing
in tweets), retweet paths, and whether containing links. The followship network
is also provided. The data set contains 5,636,858 users with 46,584,914 original
tweets being retweeted by 190,920,026 times.
1 http://www.wise2012.cs.ucy.ac.cy/challenge.html

http://www.wise2012.cs.ucy.ac.cy/challenge.html
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Fig. 2. Retweet distribution from WISE 12 Challenge data (200M tweets)

3.1 An Overview of Retweet Patterns

Our preliminary findings are summarized below.

– Figure 2(a) shows the distribution of the number of retweets that each tweet
receives. We observe from the figure that most of the original tweets receive
less than 10 retweets in their lifetime, while a small number of tweets receive
hundreds or even thousands retweets, e.g., the largest number of retweets
from a single tweet reaches 34,096 in the data set.

– Figure 2(b) shows the distribution of the number of retweets that each user
receives. Tweets authored by a small number of influential users (e.g., celebri-
ties, actors, stars) are very popular and receive most retweets. For exam-
ple, the top 100 most influential users receive 46,094,478 retweets in total,
about 24.2% of all retweets; while the top 1000 most influential users receive
86,501,021 retweets, about 45.3% of all retweets.

– Figure 2(c) shows the distribution of retweeting time of each retweet. We
can observe that most retweets occur in a very short period of time after the
tweet’s posting. For example, 81.8% of the tweets would not be retweeted
any more after the first day and only 6.28% of the tweets would last for more
than two days. However, a small number of tweets would still be retweeted
even after 100 days.
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– Figure 2(d) shows the path length distribution of each retweet. The path
length of a retweet is defined as the number of hops of the retweeting user
away from the original user who posts the tweet. For example, given a
retweeting sequence of A → B → C → D, user A’s tweet is retweeted
by user B, then retweeted by user C through user B, and finally retweeted
by user D through user C. The path length of the retweet by user C is 2
while the path length of the last retweet by user D is 3. We can observe
from the figure that 57.9% of the retweets have one single hop and 98.6%
of the retweets are within five hops, matching the concept of six degrees of
separation in social networks.

3.2 Burst Pattern

In the previous section, we found that some popular tweets are widely retweeted
and their retweets last a long time after their posting. On the contrary, a majority
of tweets would not be retweeted any more shortly after their posting. In this
section, we focus on those tweets that have been retweeted more than 100 times
in the data set. We extract 207,259 such tweets.

For those 207,259 popular tweets (each receiving more than 100 retweets), the
majority (68.71%) include only one single burst, which often occurs in the first
day when the original tweet is posted. 12.84% tweets have no burst and 18.45% of
tweets have multi-burst. Tweets with multi-burst often have longer path lengths
and longer active duration time than tweets with single or no burst, as shown
in Table 1. Among the tweets with multi-burst, there are 31,300 tweets with
two bursts and 2,782 tweets with more than 4 bursts. The maximum number of
bursts is 17 in the data set.

Table 1. The burst distribution and the average path length of 207,259 original tweets
(each receiving more than 100 retweets)

Burst Number of tweets Ratio(%) Avg. of path length Avg. of life duration (days)

No 26620 12.84 2.03 4.78

Single 142406 68.71 2.09 10.27

Multi 38233 18.45 2.32 18.87

Different Bursts. We examine whether the average path length of retweets
occurred in each burst period is different. Our conjecture is that for a tweet
authored by user A, its retweets occurred in the first burst are more from user
A’s immediate followers and retweets occurred in later bursts are more from A’s
indirect followers. Our findings show that the average path length of retweets in
the first burst is shorter than that in following bursts. Specifically, the average
path lengths for the first four bursts in our data set are 2.08, 2.29, 2.92, and 2.99
respectively, which validates our conjecture.

We further examine the path length distribution of retweets occurred in each
burst. Each curve in Figure 3 shows the fraction of retweets for each path length
value from 1 to 10. For retweets occurred in the first burst, 45.6% of retweets
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Fig. 3. Path length distribution of retweets occurred in each peak

have the path length of 1 and 30.6% of retweets have the path length of 2.
However, for retweets occurred in the second burst, 39.3% of retweets have the
path length of 2, which are more than the number of retweets (35.1%) with the
path length of 1. This shows that the second burst is mainly caused by non-
immediate followers of original users who post the tweets. We have the similar
phenomenon for the third burst and the fourth burst.

Burst Pattern vs. Topics. We examine whether topics of original tweets
have effects on burst patterns. We extract four hot topics, i.e., house price, xiao
mi release, family violence of Li Yang, and case of running fast car in Hei Bei
university. We denote them as House, Xiaomi, Li Yang, and He Bei, respectively.
For those tweets with no assigned topic, we group them in the Unknown category.

Table 2. The comparison of different topics

Topic Avg. of path length. Avg. burst duration(days) Avg. life duration(days)

Unknown 1.90 2.95 15.85

House 2.66 3.05 22.75

Xiao Mi 2.62 3.39 16.32

Li Yang 2.89 3.71 21.20

He Bei 2.97 3.64 28.15

Table 2 shows the general comparison of different categories in terms of path
length, burst duration, and life duration. We can see that the tweets from the
Unknown category have shorter path length, shorter burst duration, and shorter
life duration time than the tweets with known topics. This indicates tweets with
some particular hot topics are often widely propagated in the microblogging site.

Figure 4 shows the path length distribution for each topic category under
study. The curve of No Topic (aka, Unknown) is significantly different from
other curves corresponding to known topic categories. We can observe that the
proportions of retweets from Unknown category with path length 1 and 2 are 45%
and 38% respectively, which are much higher than the corresponding proportions
for retweets with known topics.
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Fig. 4. Path length distribution of retweets of each topic

Table 3. The information of different types of users

Users Avg. of path length. Avg. burst duration(days) Avg. life duration(days)

Top 100 1.86 2.73 10.63

Top 100-1000 2.17 3.05 18.34

Normal 3.04 3.77 28.46

Burst Pattern vs. Users. We examine whether different types of users who
post tweets have effects on burst pattern. Table 3 shows the general comparison
of three types of users: top 100, top 100-1000, and normal users. We define the
top 100 users as those who rank among the top 100 in terms of the total number
of retweets each user receives. We can see there are significant differences in
terms of path length, peak time, and duration time among three types of users.
Tweets from the top 100 most influential users have much shorter path lengths,
burst duration, and tweet life duration than the top 100-1000 and normal users.

Figure 5 shows the path length distribution for each type of user under study.
We can observe that the proportions of retweets of those tweets authored by the
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Fig. 5. Path length distribution of retweets from three types of users



On Burst Detection and Prediction in Retweeting Sequence 103

top 100 users with path length 1 and 2 are 46% and 39%, respectively, which are
much higher than the corresponding proportions for tweets from the top 100-
1000 and normal users. This phenomena shows that the top 100 most influential
users can propagate their messages more quickly in the microblogging site than
other users.

4 Burst Prediction

We are interested in the following prediction problem: given a tweet with known
information about its content, its user profile, the followship topology, and the
observed retweet sequence in the first 12 hours, can we predict whether the tweet
will have multi-burst in the future of its life cycle.

One challenge here is what kind of features we can extract from the known
information and how useful they are for burst prediction. In our study, we extract
178 features from the a-priori known information of a tweet (i.e., its topics, user
profile, followship topology, and its observed retweet sequence in the first 12
hours). The extracted features can be roughly grouped into two main classes:
user-related and tweet-related.

In the user-related class, we extract features from the profile of the user who
posts the original tweet. For example, we extract the number of his immediate
followees, the number of his two-hop followees, the number of tweets the user
has authored, the average number of retweets received in the first 12 hours for
all his tweets, and the numbers of tweets with no, single, and multiple bursts.

In the tweet-related class, we extract the features such as the tweet’s post
time, first retweeting time, the presence/absence of hot topics in the tweet, the
presence/absence of hot topics in its retweets, the presence/absence of @users in
the tweet, the presence/absence of @users in its retweets, the number of retweets
containing @users and the number of @users in its retweets, etc. For each tweet,
we also build a retweet tree from its observed retweet sequence in the first 12
hours and extract features such as the maximum width, the maximum height,
the number of retweet users, and the average path length.

In our experiment, we exclude from the Sina Weibo dataset those records in
which the original tweets’ user ID could not be found in the followship network.
Finally, we build a training data set with 30,084 tweets with no multi-burst and
30,030 tweets with multi-burst.

We run a suite of 7 classifiers: Logistic Regression (LR), Random Forest(RF),
Decision Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM), Stochas-
tic Gradient Descent (SGD), and k-Nearest Neighbor (kNN). We take the 10 fold
cross-validation for each classifier. The accuracy result is shown in Figure 6. We
can observe that Random Forest, Decision Tree, k-Nearest Neighbor, and Logistic
Regression achieve good prediction results in terms of accuracy (higher than 72%).

We then analyze the effect of each feature on prediction. We take the logis-
tic regression coefficient as the effect. The regression coefficients represent the
change in the logit for each unit change in the feature. The larger the absolute
value of the coefficient is, the more effect the feature takes. Formally, we can
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use the likelihood ratio test or the Wald statistic to assess the significance of an
individual feature. Our results show that there are only 20 features with rela-
tively large coefficient values. Figure 7 plots the logistic regression coefficient for
each feature where X-axis represents different features and Y-axis shows each
feature’s coefficient value. We list top 5 most significant features in Table 4. We
can see that the average number of retweets with path length 1 of the user’s all

Table 4. Top 5 most significant features (PL1 denotes path length 1)

Index Meaning Coefficient

121 Avg no of PL1 retweets of user’s all tweets 3.95E-05

87 Avg no of PL1 retweets (first 12h) of user’s no-burst tweets 3.51E-05

50 Avg no of retweets (first 12h) of user’s multi-burst tweets -3.37E-05

84 Avg no of retweets (first 12h) of user’s no-burst tweets 3.14E-05

82 Avg no of retweets of user’s no-burst retweets -2.86E-05
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tweets is the most significant feature with the coefficient value 3.95E-05. In our
future work, we will conduct detailed correlation analysis and examine prediction
performance after removing those redundant features.

5 Related Work

Examining retweet behavior has been an active research area recently [7–9,12,
13]. For example, the authors in [7] studies the coverage prediction of retweets,
i.e., what is the number of times that a particular message posted by a user will
be retweeted. In [13], the authors examine various factors such as user, message,
and time and propose a factor graph model to predict whether a user will retweet
a message. The authors in [9] study why people retweet and examine the anti-
homophily phenomena. In [8], the authors examine the use of log-linear modeling
to identify multi-way interactions between retweet and various features such as
power ratio, link structure and users’ profile information. In [12], the authors
analyze the ways in which hashtags spread on twitter and show widely-used
hashtags on different topics spread significantly different.

Change detection models [1,4] provide a standard approach to detecting devi-
ations from baseline. Usually we assume the mean and variance of a distribution
representing normal behavior and the mean and variance of another distribu-
tion representing behavior that is abnormal. We can measure deviations from
normal using the generalized likelihood ratio. For example, in [4], the authors
assume both distributions are Gaussian with the same variance and the change
is reflected in the mean of the observations. In this context, they apply the
generalized likelihood ratio to score changes from baseline.

Techniques for finding burst patterns in data streams have also been pre-
sented in [6,11,15,16]. In [6], the authors examine bursty structure in tempo-
ral text streams (e.g., emails or blogs). They examine how frequency words
change over time. The burstiness of words is defined as those words with signifi-
cantly higher frequency than others. They propose to model the stream using an
infinite-state automaton, in which bursts appear naturally as state transitions.
In [16], the authors examine point monitoring and aggregate monitoring in time
series data streams and design a new structure, called the Shifted Wavelet Tree,
for elastic burst monitoring. In [15], the authors propose a family of data struc-
tures based on the Shifted Binary Tree for elastic burst detection and develop a
heuristic search algorithm to find an efficient structure given the input. In [11],
the authors study how to detect, characterize and classify bursts in user query
logs of large scale e-commerce systems. The authors build several models that
continually detect newer bursts with minimal computation and provide a mech-
anism to rank the identified bursts based on a number of factors such as burst
concentration, burst intensity and burst interestingness. They also propose sev-
eral quantities to rank bursts including duration of burst, mass of burst, arrival
rate for burst, span ratio, momentum of burst, and concentration of burst, and
apply unsupervise learning techniques to classify the bursts based on their pat-
terns. Although extensive work has been done in related fields for mining various
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temporal patterns, we notice that very little work has been done to detect and
predict interesting burst patterns from large-scale retweet sequence data.

Message propagation can be regarded as a social contagion process. There
has been research on rumor propagation [5,10,14]. In [14], the authors study the
dynamics of an epidemic-like model for the spread of a rumor on a small-world
network. In [10], the authors study the dynamics of a generic rumor model on
complex scale-free topologies and investigate the impact of the interaction rules
on the efficiency and reliability of the rumor process. In [5], the authors apply the
susceptible-infectious-recovered and susceptible-infectious-susceptible models to
study the spreading process in complex networks. However, we notice that very
little work has been done to detect and predict burst patterns.

6 Conclusion

In this paper, we have proposed the use of the Cantelli’s inequality to identify
bursts from retweet sequence data. With the use of the Cantelli’s inequality,
we do not need to assume the distribution of the retweet sequence data and
can still identify bursts efficiently. We conducted a complete empirical study of
burst pattern using Sina Weibo data and examined what factors would affect
burst. We extracted various features from users’ profiles, followship topology, and
message topics and investigated whether and how accurate we can predict bursts
using various classifiers based on the extracted features. Our empirical evaluation
results show the burst prediction is feasible with appropriately extracted features
and classifiers.

In our future work, we will investigate various regression analysis methods
[3] on extracted features to predict when a tweet produces its first burst as well
as following bursts. We will analyze the bursts to see what their causality was by
matching external events that might have caused the bursts. In our future work,
we will also study how to classify bursts based upon their shapes, durations, and
derived burst characteristics. We will examine various burst characteristics such
as burst concentration, burst intensity and burst interestingness. We will study
how the window size affects burst detection and categorization. Finally, we will
study the use of topic modeling [2] to analyze tweet content and automatically
identify the topics of every tweet.
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