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Abstract. In this paper, we focus on differential privacy preserving
spectral graph analysis. Spectral graph analysis deals with the analysis
of the spectra (eigenvalues and eigenvector components) of the graph’s
adjacency matrix or its variants. We develop two approaches to com-
puting the ε-differential eigen decomposition of the graph’s adjacency
matrix. The first approach, denoted as LNPP, is based on the Laplace
Mechanism that calibrates Laplace noise on the eigenvalues and every en-
try of the eigenvectors based on their sensitivities. We derive the global
sensitivities of both eigenvalues and eigenvectors based on the matrix
perturbation theory. Because the output eigenvectors after perturbation
are no longer orthogonormal, we postprocess the output eigenvectors by
using the state-of-the-art vector orthogonalization technique. The sec-
ond approach, denoted as SBMF, is based on the exponential mechanism
and the properties of the matrix Bingham-von Mises-Fisher density for
network data spectral analysis. We prove that the sampling procedure
achieves differential privacy. We conduct empirical evaluation on a real
social network data and compare the two approaches in terms of util-
ity preservation (the accuracy of spectra and the accuracy of low rank
approximation) under the same differential privacy threshold. Our em-
pirical evaluation results show that LNPP generally incurs smaller utility
loss.

Keywords: differential privacy, spectral graph analysis, privacy preser-
vation.

1 Introduction

There have been attempts [1–3] to formalize notions of differential privacy in
releasing aggregate information about a statistical database and the mechanism
to providing privacy protection to participants of the databases. Differential pri-
vacy [1] is a paradigm of post-processing the output of queries such that the
inclusion or exclusion of a single individual from the data set make no statis-
tical difference to the results found. Differential privacy is usually achieved by
directly adding calibrated laplace noise on the output of the computation f .
The calibrating process of this approach includes the calculation of the global
sensitivity of the computation f that bounds the possible change in the compu-
tation output over any two neighboring databases. The added noise is generated
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from a Laplace distribution with the scale parameter determined by the global
sensitivity of f and the user-specified privacy threshold ε. This approach works
well for traditional aggregate functions (often with low sensitivity values) over
tabular data. In [4], McSherry and Talwar introduced a general mechanism with
differential privacy that comes with guarantees about the quality of the output,
even for functions that are not robust to additive noise. The idea is to sample
from the distribution specified by the exponential mechanism distribution. This
mechanism skews a base measure to the largest degree possible while ensuring
differential privacy, focusing probability on the outputs of highest value.

In this paper, we focus on differential privacy preserving spectral graph anal-
ysis. Spectral graph analysis deals with the analysis of the spectra (eigenvalues
and eigenvector components) of the graph’s adjacency matrix or its variants. We
develop two approaches to computing the ε-differential private spectra, the first
k eigenvalues and the corresponding eigenvectors, from the input graph G. The
first approach, denoted as LNPP, is based on the Laplace Mechanism [1] that
calibrates Laplace noise on the eigenvalues and every entry of the eigenvectors
based on their sensitivities. We derive the global sensitivities of both eigenvalues
and eigenvectors based on the matrix perturbation theory [5]. Because the out-
put eigenvectors after perturbation are no longer orthogonormal, we postprocess
the output eigenvectors by using the state-of-the-art vector orthogonalization
technique [6]. The second approach, denoted as SBMF, is based on the exponen-
tial mechanism [4] and the properties of the matrix Bingham-von Mises-Fisher
density for network data spectral analysis [7]. We prove that the Gibbs sampling
procedure [7] achieves differential privacy. We conduct empirical evaluation on
a real social network data and compare the two approaches in terms of utility
preservation (the accuracy of spectra and the accuracy of low rank approxima-
tion) under the same differential privacy threshold. Our empirical evaluation
results show that LNPP generally incurs smaller utility loss.

2 Preliminaries

2.1 Differential Privacy

We revisit the formal definition and the mechanism of differential privacy. For
differential privacy, a database is treated as a collection of rows, with each row
corresponding to an individual record. Here we focus on how to compute graph
statistics (eigen-pairs) from private network topology described as its adjacency
matrix. We aim to ensure that the inclusion or exclusion of a link between two
individuals from the graph make no statistical difference to the results found.

Definition 1. (Differential Privacy [1]) A graph analyzing algorithm Ψ that
takes as input a graph G, and outputs Ψ(G), preserves ε-differential edge privacy
if for all closed subsets S of the output space, and all pairs of neighboring graphs
G and G′ from Γ (G),

Pr[Ψ(G) ∈ S] ≤ eε · Pr[Ψ(G′) ∈ S], (1)

where Γ (G) = {G′(V,E′)|∃!(u, v) ∈ G but (u, v) /∈ G′}.
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A differentially private algorithm provides an assurance that the probability of
a particular output is almost the same no matter whether any particular edge
is included or not. A general method for computing an approximation to any
function while preserving ε-differential privacy is given in [1]. This mechanism
for achieving differential privacy computes the sum of the true answer and ran-
dom noise generated from a Laplace distribution. The magnitude of the noise
distribution is determined by the sensitivity of the computation and the privacy
parameter specified by the data owner. The sensitivity of a computation bounds
the possible change in the computation output over any two neighboring graphs
(differing at most one link).

Definition 2. (Global Sensitivity [1]) The global sensitivity of a function f :
D → Rd (G ∈ D),in the analysis of a graph G, is

GSf (G) := max
G,G′s.t.G′∈Γ (G)

‖f(G)− f(G′)‖1 (2)

Theorem 1. (The Laplace Mechanism [1]) An algorithm A takes as input a
graph G, and some ε > 0, a query Q with computing function f : Dn → Rd,
and outputs

A(G) = f(G) + (Y1, ..., Yd) (3)

where the Yi are drawn i.i.d from Lap(GSf (G)/ε). The Algorithm satisfies ε-
differential privacy.

Another exponential mechanism was proposed to achieve differential privacy for
diverse functions especially those with large sensitivities [4]. The exponential
mechanism is driven by a score function q that maps a pair of input(G) and
output(r) from Dn × Rd to a real valued score(q(G, r)) which indicates the
probability associated with the output. Given an input graph G, an output r ∈
Rd is returned such that q(G, r) is approximately maximized while guaranteeing
differential privacy.

Theorem 2. (The General Exponential Mechanism [4]) For any function q:
(Dn×Rd) → R, based on a query Q with computing function f : Dn → Rd, and
base measure μ over Rd, the algorithm Υ which takes as input a graph G and
some α > 0 and outputs some r ∈ Rd is defined as

Υα
q (G) := Choosing r with probability proportional to exp(αq(G, r)) × μ(r).

Υα
q (G) gives (2αΔq)-differential privacy, whereΔq is the largest possible difference

in q when applied to two input graphs that differ only one link, for all r.

Theorem 3. (Composition Theorem [2]) If we have n numbers of ε-differentially
private mechanisms M1, · · · ,Mn, computed using graph G, then any composition
of these mechanisms that yields a new mechanism M is nε-differentially private.

Differential privacy can extend to group privacy as well: changing a group of k
edges in the data set induces a change of at most a multiplicative ekε in the cor-
responding output distribution. In this paper, we focus on the edge privacy. We
can extend the algorithm to achieve the node privacy by using the composition
theorem [2].
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2.2 Spectral Analysis of Network Topologies

A graph G can be represented as a symmetric adjacent matrix An×n with Ai,j =
1 if there is an edge between nodes i and j, and Ai,j = 0 otherwise. We denote
the i-th largest eigenvalue of A by λi and the corresponding eigenvector by ui.
The eigenvector ui is a n × 1 column vector of length 1. The matrix A can be
decomposed as

A =

n∑

i=1

λiuiu
T
i . (4)

One major application of the spectral decomposition is to approximate the graph
dataA by a low dimension subspaceAk that captures the main information of the
data, i.e., minimizes ‖A−Ak‖F . Given the top-k eigenvalues and corresponding
eigenvectors, we have a rank-k approximation to A as

Ak =

k∑

i=1

λiuiu
T
i = UkΛkUk

T , (5)

where Λk is a diagonal matrix with Λii = λi and Uk = (u1, ..,uk).
Uk belongs to the Stiefel manifold. Denoted as νk,n, the Stiefel manifold is

defined as the set of rank-k k × n orthonormal matrices. One of the commonly
used probability distributions on the Stiefel manifold νk,n is called the matrix
Bingham-von Mises-Fisher density (Definition 3).

Definition 3. (The matrix Bingham-von Mises-Fisher density [7]) The proba-
bility density of the matrix Bingham-von Mises-Fisher distribution is given by

PBMF(X |C1, C2, C3) ∝ etr{CT
3 X + C2X

TC1X}, (6)

where C1 and C2 are assumed to be symmetric and diagonal matrices, repectively.

The matrix Bingham-von Mises-Fisher density arises as a posterior distribu-
tion in latent factor models for multivariate and relational data. Recently, a
Gibbs sampling scheme was developed for sampling from the matrix Bingham-
von Mises-Fisher density with application of network spectral analysis [7] based
on the latent factor model(Definition 4).

Definition 4. (The latent factor model for network data [7]) The network data
is represented with a binary matrix A so that Ai,j is the 0-1 indicator of a link
between nodes i and j. The latent factor model with a probit link for such network
data is defined as:

Ai,j = δ(c,∞) (Zi,j)

Zi,j = uT
i Λuj + ei,j

Z = UΛUT + E
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where E is modeled as a symmetric matrix of independent normal noise, Λ is
a diagonal matrix and U is an element of νk,n, with k generally much smaller
than n. Given a uniform prior distribution for U, we have

P(U |Z,Λ) ∝ etr(ZTUΛUT /2) = etr(ΛUTZU/2),

which is a Bingham distribution with parameters C1 = Z/2, C2 = Λ and C3 = 0.

Lemma 1. [7]A uniform prior distribution on eigenvectors U and independent
normal(0, τ2) prior distributions for the eigenvalues Λ give

P(Λ|Z,U) = Πk
i=1normal(τ2uT

i Zui/(2 + τ2), 2τ2/(2 + τ2))

P(U |Z,Λ) ∝ etr(ZTUΛUT/2) = etr(ΛUTZU/2),

where ‘normal(u, σ2)’ denotes the normal density with mean u and variance σ2.

The sampling scheme by Hoff [7] ensures Lemma 1 to approximate inferences for
U and Λ for a given graph topology. As suggested in [7], the prior parameter τ2

is usually chosen as the number of nodes n since this is roughly the variance of
the eigenvalues of an n× n matrix of independent standard normal noise.

3 Mechanism for Spectral Differential Privacy

In this section, we present two approaches to computing the ε-differential private
spectra: LNPP, which is based on the Laplace Mechanism (Theorem1), and
SBMF, which is based on the exponential mechanism [4] and the properties of the
matrix Bingham-von Mises-Fisher density for network data spectral analysis [7].

3.1 LNPP: Laplace Noise Perturbation with Postprocessing

In this approach, we output the first k eigenvalues, λ(k) = (λ1, λ2, ..., λk), and the
corresponding eigenvectors, Uk = (u1,u2, ...,uk)

)
, under ε-differential privacy

with the given graph G and parameters k, ε. We first derive the sensitivities for
the eigenvalues and eigenvectors in Results 1, 2. We then follow Theorem 1 to
calibrate Laplace noise to the eigenvalues and eigenvectors based on the derived
sensitivities and privacy parameter. Because the perturbed eigenvectors will no
longer be orthogonalized to each other, we finally do a postprocess to normalize
and orthogonalize the perturbed eigenvectors following Theorem 4.

Result 1. Given a graph G with its adjacent matrix A, the global sensitivity
of each eigenvalue is GSλi(G) = 1,(i ∈ [1, n]); the global sensitivity of the first
k(k > 1) eigenvalues as a vector, λ(k) = (λ1, λ2, ..., λk), is GSλ(k)(G) =

√
2k.

Proof. We denote adding/deleting an edge between nodes i and j on the original
graph G as a perturbation matrix P added to the original adjacent matrix A.
Pn×n is a symmetric matrix where only Pi,j and Pj,i have value 1/−1 and all

other entries are zeros. We denote λi as the eigenvalue of the matrix A and λ̃i
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as that of matrix A + P . We have the Euclidean norm and Frobenius norm of
P respectively as ‖P‖2 = 1 and ‖P‖F =

√
2. Based on the matrix perturbation

theory [5](Chapter IV, Theorem 4.11), we have

GSλi (G) ≤ max |λ̃i − λi| ≤ ‖P‖2 = 1

and

GSλ(k)(G) =

k∑

i=1

|λ̃i − λi| ≤
√
k

√√√√
k∑

i=1

(λ̃i − λi)2 ≤
√
k‖P‖F =

√
2k.

Result 2. Given a graph G with its adjacent matrix A, the sensitivity of each

eigenvector, ui(i > 1), is GSui(G) =
√
n

min{|λi−λi−1|,|λi−λi+1|} , where the denom-

inator is commonly referred as the eigen-gap of λi. Specifically, the sensitiv-

ities of the first and last eigenvector are respectively GSu1(G) =
√
n

λ1−λ2
and

GSun(G) =
√
n

λn−1−λn
.

Proof. We define the perturbation matrix P and other terminologies the same
as those in the proof of Result 1. We denote eigenvectors of matrix A,A +
P respectively as column vectors ui and ũi (i ∈ [1, k]). Based on the matrix
perturbation theory [5](Chapter V, Theorem 2.8), for each eigenvector ui(i > 1),
we have

GSui(G) ≤ √
n‖ũi − ui‖2 ≤

√
n‖Pui‖2

min{|λi − λi−1|, |λi − λi+1|}
≤

√
n

min{|λi − λi−1|, |λi − λi+1|} .

Specifically for i = 1 (similarly for i = n),

GSu1(G) ≤ √
n‖ũ1 − u1‖2 ≤

√
n‖P‖2

λ1 − λ2
=

√
n

λ1 − λ2
.

Theorem 4. (Orthogonalization of vectors with minimal adjustment [6]) Given
a set of non-orthogononal vectors x1, ...,xk, we could construct components
u1, ...,uk such that xi is close to ui for each i, and UTU is an identity ma-
trix where U = (u1, ...,uk) following

U = XC,

where X = (x1, ...,xk) is the set of n× 1vectors and XTX is non-singular, C is
the symmetric square-root of (XTX)−1 and is unique.
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Algorithm 1. LNPP: Laplace noise calibration approach

Input: Graph adjacent matrix A, privacy parameter ε and dimension parameter k
Output: The first k eigenvalues ˜λ(k) = (λ̃1, λ̃2, ..., λ̃k) and corresponding eigenvectors
ũ1, ũ2, ..., ũk, which satisfies ε-differential privacy.

1: Decomposition A to obtain the first k eigenvalues λ(k) = (λ1, λ2, ..., λk) and the
corresponding eigenvectors u1,u2, ...,uk;

2: Distribute ε into ε0, ..., εk, s.t.ε =
∑k

i=0 εi;

3: Follow Theorem 1 to add Laplace noise to λ(k) with ε0 based on GSλ(k)(G) derived

in Result 1 and obtain ˜λ(k) = (λ̃1, ..., λ̃k);
4: For i:=1 to k do

Follow Theorem 1 to add Laplace noise to ui with εi based on GSui(G) derived in
Result 2 and obtain x̃i;
Endfor

5: Normalize and orthogonalize x̃1, ..., x̃k to obtain ũ1, ..., ũk following Theorem 4.
6: Output λ̃1, λ̃2, ..., λ̃k and ũ1, ũ2, ..., ũk

Algorithm 1 illustrates our LNPP approach. We output the first k eigenvalues,
λ̃(k) = (λ̃1, λ̃2, ..., λ̃k), and the corresponding eigenvectors, ũ1, ũ2, ..., ũk), under
ε-differential privacy with the given graph topology A and parameters k, ε. We
first compute the real values of eigenvalues λ(k) and eigenvectors ui(i ∈ [1, k])
from the given graph adjacent matrix A (Line 1). Then we distribute the privacy
parameter ε among λ(k) and u1,u2, ...,uk respectively as ε0 and ε1, ε2, ..., εk
where ε =

∑k
i=0 εi (Line 2). With the derived the sensitivities for the eigenvalues

(GSλ(k)(G)) and each of the k eigenvectors (GSui(G), i ∈ [1, k]) from Results 1
and 2, next we follow Theorem 1 to calibrate Laplace noise and obtain the private
answers λ̃(k) (Line 3) and x̃1, x̃2, ..., x̃k (Line 4). Finally we do a postprocess to
normalize and orthogonalize x̃1, x̃2, ..., x̃k into ũ1, ũ2, ..., ũk following Theorem
4 (Line 5).

3.2 SBMF: Sampling from BMF Density

The SBMF approach to provide spectral analysis of network data is based on the
sampling scheme proposed by Hoff [7] as an application of their recently-proposed
technique of sampling from the matrix Bingham-von Mises-Fisher density (Defi-
nitions 3, 4). In [8], the authors investigated differentially private approximations
to principle component analysis and also developed a method based on the gen-
eral exponential mechanism [4]. In our work we focus on the eigen-decomposition
of the 0-1 adjacency matrix (rather than the second moment matrix of the nu-
merical data) and prove that the sampling scheme from the matrix Bingham-von
Mises-Fisher density satisfies differential privacy through the general exponen-
tial mechanism (Theorem 2). The sampling scheme proposed by Hoff [7] ensures
Lemma 1, with the purpose to build the latent factor model (Definition 4) for
network data, i.e, to approximate inferences for U and Λ. We derive the pri-
vacy bounds of the output eigenvalues and eigenvectors following the sampling
scheme respectively in Claims 1 and 2, based on Lemma 1. Then following the
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Composition Theorem (Theorem 3), we come to the conclusion that the SBMF
approach satisfies ε-differential privacy (Theorem 5).

Claim 1. The sampling scheme which outputs λ(k) satisfies εΛ-differential pri-

vacy where εΛ = k( 2τ2

2+τ2 )
3/2.

Proof. We denote A and A′ as the adjacent matrix of any neighboring graph
G and G′. The calibrated noise to a function f from the Gaussian distribution
normal(0, σ2), similar as that from the Laplace distribution, provides a 2σGSf -
differential privacy [1]. Based on Lemma 1, we have for each eigenvalue λi, the
sampling scheme satisfies

ελi = 2σGSλi = 2(
2τ2

2 + τ2
)1/2{τ2uT

i Aui/(2 + τ2)− τ2uT
i A

′ui/(2 + τ2)}

= 2(
2τ2

2 + τ2
)1/2

τ2

2 + τ2
uT
i (A−A′)ui ≤ (

2τ2

2 + τ2
)3/2

where the proof of uT
i (A −A′)ui ≤ 1 is straightforward. With the composition

theorem (Theorem 3), εΛ =
∑k

i=1 ελi = k( 2τ2

2+τ2 )
3/2.

Claim 2. Given the graph G’s adjacent matrix A, the sampling scheme which
outputs U satisfies εU -differential privacy where εU = k2λ1.

Proof. The sampling scheme for U can be considered as an instance for the
exponential mechanism( Theorem 2) with α = 1 and q(A,U) = tr(ΛUTAU/2).
We have

Δq(A,U) =
∣∣tr(ΛUTAU/2)− tr(ΛUTA′U/2)

∣∣ = 1

2

∣∣tr(ΛUT (A−A′)U)
∣∣

≤ 1

2
kλ1

∣∣tr(UT (A−A′)U)
∣∣ ≤ 1

2
k2λ1.

Following Theorem 2, we have εU = 2αΔq(A,U) = k2λ1.

Theorem 5. The SBMF approach to computing the spectra, the first k eigen-
values and the corresponding eigenvectors of a given graph topology A satisfies

ε = (εΛ + εU )-differential privacy, where εΛ = k( 2τ2

2+τ2 )
3/2 and εU = αk2λ1.

In this work, we take the prior parameter τ2 as n, which is suggested by Hoff [7]
since this is roughly the variance of the eigenvalues of an n× n matrix of inde-
pendent standard normal noise. We illustrate the SBMF approach in Algorithm
2. In the Algorithm, the parameter α is used to change the privacy magnitude by
changing εU (Theorems 2, 5). Given the input graph topology A and dimension

parameter k, we acquire the eigenvalues Λ̃k and corresponding eigenvectors Ũk

from the sampler application provided by Hoff [7] with input matrix αA. The
output satisfies ε = (εΛ + εU )-differential privacy following Theorem 5.
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Algorithm 2. SBMF: Sampling from BMF density approach

Input: Graph adjacent matrix An×n, privacy magnitude α and dimension parameter
k
Output: The first k eigenvalues ˜Λk and corresponding eigenvectors ˜Uk, which satisfies
ε = (εΛ + εU )-differential privacy.

1: Set the input matrix Y = αA, the parameter τ 2 = n and the number of iterations
t;

2: Acquire ˜Λk and ˜Uk from the sampler provided by Hoff [7] with the input matrix
Y , the output satisfies ε = (εΛ + εU )-differential privacy(Theorem 5);

3: Output ˜Λk and ˜Uk

4 Empirical Evaluation

We conduct experiments to compare the performance of the two approaches,
LNPP and SBMF, in producing the differentially private eigenvalues and eigen-
vectors. For the LNPP, we implement Algorithm 1. For the SBMF, we use the
R-package provided by Hoff [7]. We use ‘Enron’ (147 nodes, 869 edges) data set
that is derived from an email network 1 collected and prepared by the CALO
Project. We take the dimension k = 5 since it has been suggested in previous
literatures [9] that the first five eigenvalues and eigenvectors are sufficient to
capture the main information of this graph. The first two rows in Table 1 show
the eigenvalues and their corresponding eigen-gaps (Result 2).

4.1 Performance Comparison with α = 1

In this section, we compare the performance of the LNPP approach with that of
the SBMF approach in three aspects: the accuracy of eigenvalues, the accuracy
of eigenvectors and the accuracy of graph reconstruction with the private eigen-
pairs. With τ2 = n and α = 1, we compute that ελ = 14 and εU = 446 following
Claims 1 and 2. Therefore the SBMF approach satisfies ε = 460 differential
privacy following Theorem 5. On the other hand, the same ε is taken as the input
for the LNPP approach. Different strategies have been proposed to address the
ε distribution problem(Line 2 in Algorithm 1) in previous literatures [10, 11].
In our work, we just take one simple strategy, distributing ε as ε0 = 10 to the
eigenvalues and εi = 90, (i ∈ [1, k]) equally to each eigenvector. Therefore LNPP
approach also satisfies ε = 460 differential privacy.

For eigenvalues, we measure the output accuracy with the absolute error de-
fined as EΛ = |λ̃(k) −λ(k)|1 =

∑k
i=1 |λ̃i − λi|. The absolute errors EΛ for LNPP

and SBMF are respectively 0.9555 and 345.2301. One sample o eigenvalues In
the third and fourth rows of Table 1, we show the output eigenvalues from the
LNPP and the SBMF approaches. We can see that the LNPP outperforms the
SBMF in more accurately capturing the original eigenvalues.

For eigenvectors, we define the absolute error as EU = |Ũk − Uk|1. EU for
LNPP and SBMF approaches are respectively 11.9989 and 13.4224. We also

1 http://www.cs.cmu.edu/~enron/

http://www.cs.cmu.edu/~enron/
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Table 1. Eigenvalues Comparison

λ1 λ2 λ3 λ4 λ5

eigenvalue 17.8317 12.7264 10.6071 9.7359 9.5528

eigen-gap 5.1053 2.1193 0.8712 0.1832 0.1832

LNPP 18.1978 13.2191 10.6030 9.7311 9.4650

SBMF 107.8450 88.9362 76.1712 76.0596 56.6721

Table 2. Eigenvector Comparison

Approaches EU
cos〈ũi,ui〉 = ũ′

i · ui

u1 u2 u3 u4 u5

LNPP 11.9989 0.9591 0.7925 0.4786 0.1217 0.1280

SBMF 13.4224 0.6605 0.6995 0.7336 0.2921 0.4034

define the cosine similarity to measure the accuracy of each private eigenvector
as cos〈ũi,ui〉 = ũ′

i · ui(i ∈ [1, k]). We show the detailed values of EU and the
cosine similarities in Table2. Note that the cosine value closer to 1 indicates
better utility. We can see that LNPP generally outperforms SBMF in privately
capturing eigenvectors that close to the original ones. Specifically, the LNPP
approach is sensitive to eigen-gaps (second row in Table 1), i.e., it tends to show
better utility when the eigen-gap is large such as for u1 and u2. Thus a better
strategy will be distributing privacy parameter ε according to magnitudes of
eigen-gaps, instead of the equal distribution.

The SBMF approach outputs much larger eigenvalues than the original ones.
It does not tend to accurately approximate anyone of the original eigenvectors
either. The reason is that SBMF approach is designed to provide a low rank
spectral model for the original graph rather than approximating of the original
eigenvalues and eigenvectors.

We consider the application of graph reconstruction using the differentially pri-
vate first k eigenvalues and the corresponding eigenvectors.Ak =

∑k
i=1 λiuiu

T
i =

UkΛkU
T
k is commonly used as a rank-k approximation to the original graph topol-

ogyAwhenA is not available for privacy reasons orA’s rank is too large for analysis.
Since Ak is not an 0/1 matrix, We discretize Ak as Ã1

k by choosing the largest 2m
entries as 1 and all others as 0 (so keeping the number of edgesm the same as that
of the original graph).We then compare the performance of the two approaches by

the absolute reconstruction error defined as γ = ‖A−Ã1
k‖F .The γ values forLNPP

and SBMF approaches are 47.7912 and 34.1760 respectively. We can see that the
result of the SBMF approach outperforms the LNPP.

4.2 Performance Comparison with Varying α

In this section, we change the privacy magnitude to additionally study the per-
formance of the LNPP and SBMF approaches. α denotes the amplification
factor of the privacy parameter ε used in section 4.1. We choose the value
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Table 3. Comparison of two approaches for varying privacy magnitudes

α 0.01 0.1 0.5 1 5 10

EΛ
LNPP 60.1586 4.0160 2.1452 0.9555 0.2528 0.0527
SBMF 51.6551 89.0678 90.9442 345.2301 69.6852 96.8904

EU
LNPP 12.7419 13.2455 13.9874 11.9989 13.3967 12.7033
SBMF 14.3155 13.7518 14.0238 13.4224 14.5114 13.6087

γ
LNPP 56.2139 55.4617 51.1859 47.4912 41.3763 39.7492
SBMF 56.8155 55.8211 56.7450 34.1760 56.3715 56.9210

of α as 0.01, 0.1, 0.5, 1, 5, 10 where the corresponding ε values are respectively
18.46, 58.6, 237, 460, 2244, 4474 following Theorem 5.

We show the values of EΛ, EU and γ for the LNPP and the SBMF approaches
in Table 3. The accuracy of the LNPP approach increases significantly with α
for both the eigenvalues(EΛ) and graph reconstruction (γ). Note that the greater
the α, the weaker privacy protection, and hence the more utility preservation.
However, the accuracy of eigenvectors measured by EU is not changed much
with α, as shown in Figure 1. This is because of the normalization of eigenvectors
in the postprocess step. While the SBMF approach cannot accurately capture
eigenvalues for any α value; as to graph reconstruction, the case of α = 1 shows
the best utility.
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Fig. 1. Utility comparison for varying privacy magnitude

5 Conclusion

In this paper we have presented two approaches to enforcing differential privacy
in spectral graph analysis. We apply and evaluate the Laplace Mechanism [1]
and the exponential mechanism [4] on the differential privacy preserving eigen
decomposition on the graph topology. In our future work, we will investigate
how to enforce differential privacy for other spectral graph analysis tasks (e.g.,
spectral clustering based on graph’s Laplacian and normal matrices). Nissim et
al. [3] introduced a framework that calibrates the instance-specific noise with
smaller magnitude than the worst-case noise based on the global sensitivity. We
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will study the use of smooth sensitivity and explore how to better distribute
privacy budget in the proposed LNPP approach. We will also study how differ-
ent sampling strategies in the proposed SBMF approach may affect the utility
preservation.
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