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Abstract. Individual privacy in genomic era is becoming a growing
concern as more individuals get their genomes sequenced or genotyped.
Infringement of genetic privacy can be conducted even without raw geno-
types or sequencing data. Studies have reported that summary statistics
from Genome Wide Association Studies (GWAS) can be exploited to
threat individual privacy. In this study, we show that even with differen-
tially private GWAS statistics, there is still a risk for leaking individual
privacy. Specifically, we constructed a Bayesian network through min-
ing public GWAS statistics, and evaluated two attacks, namely trait
inference attack and identity inference attack, for infringement of indi-
vidual privacy not only for GWAS participants but also regular individ-
uals. We used both simulation and real human genetic data from 1000
Genome Project to evaluate our methods. Our results demonstrated that
unexpected privacy breaches could occur and attackers can derive iden-
tity information and private information by utilizing these algorithms.
Hence, more methodological studies should be invested to understand
the infringement and protection of genetic privacy.

1 Introduction

In the era of genomic medicine, it is critical to share genomic information with
minimal worries about genetic privacy. To achieve this goal, we need to inves-
tigate human genetic data such as individual genotypes, and explore if and to
what extent genetic privacy [1–4] can be breached. Human genotype data is
sensitive by nature and belongs to the data type that should be dealt with
scrutiny and specific restrictions. For example, the Health Insurance Portability
and Accountability Act of 1996 (HIPAA) is deployed protects the privacy of
individually identifiable health information in the USA [5]. In response to the
HIPAA privacy rule, data collectors and supervisory organization must meet
the requirements that ensure the data analysts agree with privacy restrictions
according to USA Genetic Information Nondiscrimination Act of 2008 (GINA),
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and organizations should protect against all forms of genetic discrimination from
using individuals’ genetic information.

However, studies have shown that publicly available data not covered by
HIPAA protection (e.g. allele frequency of genetic variants) can be used to infer
identifiable personal information [1,6]. Taking Homer et al.(2008)’s research as
an example, they developed a method that can identify straightforward whether
a target with some known SNPs comes from an population with known allele
frequency [7]. It attracted more and more attention on the privacy disclosure of
the public dissemination of the genotype-related data and aggregate statistics
from the genome-wide association studies (GWAS) [8–10]. Hence, the database of
Genotypes and Phenotypes (dbGaP) was deployed to manage controlled access
to genotype data. However, even without raw genotype or sequence data, sum-
mary statistics can be exploited by attackers where such public information is
combined with health records and other online information [1,6]. One recent
study [11] showed that full identities of personal genomes can be exposed via
surname inference from recreational genetic genealogy databases followed by
Internet searches. They considered a scenario in which the genomic data are
available with the target’s year of birth and state of residency, two identifiers
not protected by HIPAA.

Our previous work [12] studied whether and to what extent the unperturbed
GWAS statistics can be exploited to breach the privacy of regular individuals
who are not GWAS participants. We introduced a framework based on Bayesian
networks that captures the associations between SNPs and traits mined from
public GWAS statistics in the GWAS catalog [13]. Two attacks, namely trait
inference attack and identify inference attack, which can be exploited to breach
genetic privacy of non-participant individuals, were formalized based on the
Bayesian network inference and empirically evaluated.

Several research works [14,15] have been conducted for the safe release of
aggregate GWAS statistics without compromising a participant’s privacy. Their
ideas were based on differential privacy [16]. According to [6,16,17], differential
privacy is defined as a paradigm of post-processing the output and is agnostic to
auxiliary information an adversary may possess, and provides guarantees against
arbitrary attacks. A differentially private algorithm provides an assurance that
the output cannot be exploited by the attacker to derive whether or not any
individual’s record is included.

In this paper, we focus on examining whether and to what extent the dif-
ferentially private GWAS statistics can still be exploited by attackers to breach
the privacy. As the differentially private GWAS statistics are perturbed with
noise, one conjecture is that the perturbed GWAS statistics will do no harm to
regular individuals. To examine this conjecture, we construct the Bayesian net-
work using the differentially private GWAS statistics, develop efficient formulas
to infer the probability of conducting these two attacks, and conduct empirical
evaluations of our formulas and algorithms on simulation and real human genetic
data. Our results reveal that these privacy protected statistics under differen-
tial privacy can still be employed by attackers to identity individuals or derive
private information.
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2 Differentially Private GWAS Statistics

2.1 Differential Privacy

We first revisit the formal definition and mechanism of differential privacy [17].
In prior work on differential privacy, a database is treated as a collection of rows,
with each row corresponding to the data of an individual. Here we focus on how
to compute GWAS statistics under differential privacy. The goal is to ensure
that the inclusion or exclusion of an individual in the GWAS dataset makes no
statistical difference to the results.

Definition 1 (Differential Privacy). A GWAS algorithm Ψ that takes as input
a GWAS dataset D, and outputs Ψ(D), preserves (ε)-differential privacy if for
all closed subsets S of the output space, and all pairs of neighboring datasets D
and D′ from Γ (D),

Pr[Ψ(D) ∈ S] ≤ eε · Pr[Ψ(D′) ∈ S], (1)

where D and D′ are two neighboring datasets that differ in only one record.

A general method for computing an approximation to any function f while
preserving ε-differential privacy is given in [16]. The mechanism for achieving
differential privacy computes the sum of the true answer and random noise gen-
erated from a Laplace distribution. The magnitude of the noise distribution
is determined by the sensitivity of the computation and the privacy parame-
ter specified by the data owner. The sensitivity of a computation bounds the
possible change in the computation output over any two neighboring datasets
(differing at most one individual’s record).

Theorem 1 (The Mechanism of Adding Laplace noise [16]). An algorithm A
takes as input a dataset D, and some ε > 0, a query Q with computing function
f : D → Rd, and outputs

A(D) = f(D) + (Y1, ..., Yd) (2)

where the Yi are drawn i.i.d from Lap(GSf (D)/ε) and GSf (D) :=
maxD,D′s.t.D′∈Γ (D) ||f(D) − f(D′)||1 is the global sensitivity of a function f .
The mechanism satisfies ε-differential privacy.

Differential privacy applies equally well to an interactive process, in which an
adversary adaptively questions the system about the data. Differential privacy
maintains composability, i.e., differential privacy guarantees can be provided
even when multiple differentially private releases are available to an adversary.

2.2 GWAS Catalog and Statistics

Case-control studies under the GWAS framework are usually conducted by com-
paring the genotypes of two groups of participants: individual with the trait
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(case group) and matched individuals without the trait (control group). Depen-
dent on genotyping platform, the number of SNPs genotyped in a GWAS setting
typically ranges from tens of thousands to tens of millions. From genotype data,
we can view that an SNP locus has two possible alleles, a risk allele and a non-
risk allele. The risk allele is the allele that is more frequent in the case group
comparing with the control group. The odds ratio, which is defined as the ratio
of the proportion of individuals in the case group having a specific allele, and the
proportion of individuals in the control group having the same allele, is often
used to report the difference. When the allele frequency in the case group is
higher than in the control group, the odds ratio will be higher than 1. Addition-
ally, a p-value for the significance of the odds ratio is typically calculated using a
simple chi-squared test. Those SNPs whose odds ratios are significantly different
from 1, along with the statistics (e.g. p-value and odds ratio) are curated as the
GWAS catalog [13].

Specifically, we can extract the following data from the GWAS catalog: a
trait set T , which contains m traits, and an SNP set S, which contains n SNPs.
For each specific trait Tk ∈ T , we have a subset of associated SNPs. For each
associated SNP Sj , we can extract its corresponding risk allele type (rSNPkj)
associated trait Tk, the odds ratio Okj of the association test, and the risk allele
frequency in the control group f t

kj .
Though not directly given in the GWAS catalog, the risk allele frequency in

the case group can be derived from the corresponding odds ratio and the risk
allele frequency in the control group. For an SNP Sj associated with a trait Tk,
with the released odds ratio (Okj) and the risk allele frequency in the control
group f t

kj , the risk allele frequency in the case group fc
kj can be derived as

fc
kj =

Okj · f t
kj

Okj · f t
kj + 1 − f t

kj

. (3)

2.3 Differentially Private GWAS Statistics

Differential privacy has been significantly studied from a theoretical perspective
[18–21]. Enforcing differential privacy in genomic data has been recently pro-
posed [14,15], where classical GWAS statistics and models (e.g., the allele fre-
quencies of cases and controls, chi-square statistic and p-values) were explored.

We use x = {x1,x2, ...,xnc+nt
} to denote a GWAS data set that contains nc

cases and nt controls. Each SNP profile xi contains N SNPs. The purpose of a
typical GWAS study is to identify K SNPs that are significantly associated with
the trait under study. For each SNP, we can easily derive that the risk allele
frequency in the case (control) group fc (f t) has a global sensitivity of 1

nc
( 1

nt
)

where nc(nt) is the number of individuals in the case (control) group. The sensi-
tivity of various statistics used for statistical tests between a given SNP and the
trait can also be derived straightforwardly. For example, the sensitivity values of
chi-square statistic and p-values were derived in [14] and those sensitivity values
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are small. For those statistics with large sensitivity values (e.g., the sensitivity of
odds ratio is infinity), we can use perturbed risk allele frequencies to indirectly
calculate them.

One naive approach for differentially private releasing K significant SNPs
based on a given statistics Φ (e.g., chi-square statistic) is to add the Laplace
noise Lap(N

ε GSΦ) to the true statistic value of each of N SNPs and then output
K SNPs with most significant perturbed statistics values. However, this naive
approach is infeasible in GWAS because the noise magnitude of Lap(N

ε GSΦ) is
very large due to the large number of SNPs (N). In [18], the authors developed
an effective differential privacy preserving method on how to release the most
significant patterns together with their frequencies in the context of frequent
pattern mining. The authors in [14] adapted this method to GWAS and aimed
to release K most significant SNPs. This algorithm achieves ε differential privacy,
with the magnitude of added noise proportional to K rather that to N . This
is more efficient since that the number of significant SNPs (K) is much smaller
than the number of total SNPs (N).

Here, we assume we are not able to access the raw SNP genotype data, while
we have access to significant SNPs Γ associated with a trait via the released
GWAS catalog. Thus we add the Laplace noise directly to the statistics of those
SNPs Γ. In particular, for each significant SNP, we add the Laplace noise of mean
zero and magnitude of Lap( 2K

εnc
) (Lap( 2K

εnt
)) to the risk allele frequency in the

case group fc (in the control group f t), and then use the perturbed frequencies
to calculate the odds ratio. Recall that the risk allele frequency in the case
(control) group fc (f t) has a global sensitivity of 1

nc
( 1

nt
). Algorithm 1 shows

our detailed algorithm. The perturbed odds ratio values are used to construct
the two-layered Bayesian network.

Algorithm 1. Differentially Private Genome-wide Association Study.
Input: The genotype profile dataset x = {x1,x2, ...,xnc+nt} containing nc cases and
nt controls in terms of a total number of N SNPs; the number of most relevant SNPs
to be released K; the sufficient statistic function F ; the privacy parameter ε0, ε.
Output: The K most relevant SNPs with corresponding noisy statistics.
1: Compute the sufficient statistics F (x) for each of the N SNPs and perturb each

real value with the Laplace noise of mean zero and magnitude of Lap( 4K
ε0

GSF ).
2: Pick K most relevant SNPs in terms of the noisy F (x). Let this set be denoted as S.
3: Perturb the true value F (x) with the new Laplace noise with mean zero and mag-

nitude of Lap( 2K
ε0

)GSF and output S.
4: Calculate and output other related statistics to be released for the SNPs in S, for

example risk allele frequency in control f t and that in case fc, under differ-
ential privacy with additional amount of privacy parameter ε based on their
corresponding global sensitivity.
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3 Attack Inference Based on a Bayesian Network

3.1 Constructing a Bayesian Network from Perturbed GWAS
Statistics

A Bayesian network G = (V,E) is a Directed Acyclic Graph (DAG), where the
nodes in V represent the variables and the edges in E represent the dependence
relationships among the variables. The dependence/independence relationships
are graphically encoded by the presence or absence of direct connections between
pairs of variables. Hence a Bayesian network shows the (in)dependencies between
the variables qualitatively, by means of the edges, and quantitatively, by means
of conditional probability distributions which specify the relationships.

In GWAS, we distinguish between two different sets of variables: the set T
of the m traits, Tk, and the set S of the n SNPs, Sj . Each trait Tk is a binary
random variable taking values in the set {1, 0}, where 1 stands for the presence
of the trait of a participant and 0 stands for the absence. Similarly, each SNP Sj

has its domain in the set {1, 0}, where 1 stands for the SNP has the risk allele
and 0 otherwise. Throughout this paper, we use upper-case alphabets, e.g., X, to
represent a variable; bold upper-case alphabets, e.g., X, to represent a subset of
variables. We use lower-case alphabets, e.g., x, to represent a value assignment
of X; bold lower-case alphabets, e.g., x to represent a value assignment of X.

We adopt the approach [12] to build a two-layered Bayesian network from
the aforementioned perturbed GWAS statistics. The constructed network is com-
posed of two layers, the trait layer and the SNP layer, with edges only going from
trait nodes to SNP nodes. Each node at the top level denotes a specific trait;
while each node at the second level denotes an SNP. If an SNP(Sj) is associated
with a trait(Tk), a directed edge is added from Tk to Sj . The conditional proba-
bility table associated with each node is populated with the derived information
from the perturbed GWAS statistics.

With the Bayesian network constructed from the perturbed GWAS statistics,
we can calculate the joint probability for any desired assignment of values to
variables sets S (SNPs), T (traits) by

P (s, t) =
∑

T′

( ∏

S∈S

P (s|Par(S)) ·
∏

T∈T

P (t) ·
∏

T ′∈T′
P (t′)

)
(4)

where lowercase s and t denote value assignment to variable sets S and T,
T′ denotes the set of all the parent traits of the SNPs in S except for those
already contained in T, i.e., T′ = Par(S)\T, and

∑
X f(x) means to sum up all

f(x) going through all instances of attributes X (i.e., all value combinations of
attributes in X).

Additionally, we can calculate the conditional joint probability for any desired
assignment of values to variables sets Sx,Tx given the observed assignment of
variables sets Sy,Ty by

P (sx, tx|sy, ty) =
P (sx, tx, sy, ty)

P (sy, ty)
(5)
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where Sx and Sy denote the set of SNPs, Tx, Ty denote the set of traits, and
the joint probability P (Sx,Tx,Sy,Ty) and P (Sy,Ty) can be calculated Eq. 4.

Equations 4 and 5 are straightforwardly derived by following the marginal-
ization strategy in the reasoning process of the Bayesian network. Note that we
do not need to involve all variables in our summation to calculate P (S,T) and
we can apply marginalization by summing out ‘irrelevant’ variables. In our two-
layer Bayesian network, irrelevant variables include all nodes that are not in the
ancestor subgraph for the set of variables of interest (S,T).

3.2 Inference Attacks Based on a Two-Layered Bayesian Network

The constructed Bayesian network, which captures the conditional dependency
between SNPs and their associated traits, is used as background knowledge for
two attacks.

Trait Inference Attack. We assume that an attacker has stolen genotype
profile of the target and aims to derive the probability that the victim has a
specific trait using the constructed Bayesian network. The probability of the
prevalence of a specific trait, which is retrievable from the literature or the
internet, is used as the prior probability that the target has the specific trait. The
attacker can improve his/her guess by calculating the posterior probability of the
target having the trait by inferring from with the target’s genotypes. Formally,
we represent the genotype of a target v as a vector, rv = (rv1, rv2, · · · , rvn),
with each entry rvj denoting the allele type of SNP j. The attacker aims to
learn the posteriori probability P (tk|rv) that the target has a specific trait Tk

given the target’s genotype profile rv using the constructed Bayesian network.
The posteriori probability P (tk|rv) can be calculated by

P (tk|rv) = P (tk|Chd(Tk)) =
P (tk) ·

∏
S∈Chd(Tk)

P (s|tk)
∑

Tk
P (tk) ·

∏
S∈Chd(Tk)

P (s|tk)
, (6)

where Chd(Tk) denotes children SNP nodes of trait Tk.
Instead of conducting inference based on the whole Bayesian network G, the

attacker can simply identify the subgraph Gk that contains all children SNPs of
the target trait Tk, and then calculate the posterior probability following Eq. 6.

Identity Inference Attack. We assume that the attacker has access to an
anonymized genotype dataset that contains the target’s genotype record and
the attacker knows a subset of traits the target has. Formally, we denote
the anonymized genotype profile dataset as R, where each record ri =
(ri1, ri2, · · · , rin) represents the genotype profile of an anonymized individual
i. We assume that the genotype profile of the target rv is contained in R, and
the attacker knows T�, a subset of traits the target has. The attacker aims
to learn the posteriori probability P (ri = rv|t�) that the genotype record ri

corresponds to the target using the constructed Bayesian network.



362 Y. Wang et al.

For each genotype record ri ∈ R, the posterior probability P (ri|t�) is

P (ri|t�) =
∑

T′

( |ri|∏

j=1

P (rij |Par(Sj)) ·
∏

T ′∈T′
P (t′)

)
, (7)

and the probability that ri belongs to the target v is

P (ri = rv |t�) =
P (rv |t�)

∑|R|
i=1 P (ri|t�)

=

∑
T′
(∏|rv|

j=1 P (rvj |Par(Sj)) ·
∏

T ′∈T′ P (t′)
)

∑|R|
i=1

∑
T′
(∏|ri|

j=1 P (rij |Par(Sj)) ·
∏

T ′∈T′ P (t′)
)

(8)

where T′ = T \T�.
Since the calculation of P (ri = rv|t�) shown in Eq. 8 involves summation over

T′. We present a simplified formula. For each genotype record, the probability
that ri belongs to the target v is

P (ri = rv|t�) =

∏|ri|
j=1 P (rij |Par(Sj))

∑|R|
i=1

∏|ri|
j=1 P (rij |Par(Sj))

. (9)

Identity inference attack describes a possible approach an attacker could take
to identify the target individual’s record in the dataset. Based on this attack, the
attacker can also infer other private information of the target individual. For exam-
ple, after deriving the probability that each record in the genotype dataset belongs
to the target individual, the attacker can further derive any other trait that the tar-
get may have, based on the genotype information contained in the dataset. Assume
the attacker also knows the target individual has a subset of traits, TS . The prob-
ability that the target has a new trait Tnew can be derived as

P (tnew|rv ∈ R, t�) =
|R|∑

i=1

P (ri = rv|rv ∈ R, t�) × P (tnew|ri). (10)

4 Evaluation

We conduct experiments to evaluate how the trait inference attack and the iden-
tity inference attack work based on the Bayesian network constructed from the
differentially private statistics. Our evaluation is based on the 85 Utah residents
with ancestry from northern and western Europe (CEU) from the 1000 Genomes
Project. In our experiments, we choose two privacy threshold values, ε = 2 and
ε = 0.2, which represent two settings for reasonable privacy preservation in
GWAS. For each ε, we follow the procedure in Sect. 2.3 to derive the differential
privacy preserving statistics and then construct the Bayesian network.

Table 1 shows the comparison of the trait inference attack. Column P (tk = 1)
shows the prevalence of the trait in population. Columns P (tk = 1|rij = 1),
P (tk = 1|rij = 1)(ε = 2), and P (tk = 1|rij = 1)(ε = 0.2) show the average prob-
ability that the 85 CEU participants from the 1000 Genomes Project has each
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Table 1. Differential private posterior probability of certain trait considering one SNP.

Index P (tk = 1) P (tk = 1|rij = 1) P (tk = 1|rij = 1)(ε = 2) P (tk = 1|rij = 1)(ε = 0.2)

1 0.05 0.0751 0.0749 0.0749

2 0.0701 0.0670 0.0679

3 0.0584 0.0581 0.0571

4 8E-5 1.54E − 4 1.59E − 4 1.49E − 4

5 0.056 0.0923 0.0934 0.2637

6 0.036 0.023 0.023 0.023

7 0.10 0.2031 0.2054 0.2055

8 0.0303 0.0360 0.0360

9 0.0258 0.0300 0.0301

10 0.16 0.1991 0.1992 0.1986

trait under three compared scenarios, using directly released GWAS statistics,
2-differentially private statistics, and 0.2-differentially private statistics, respec-
tively. The results from Table 1 shows that most of the average probabilities are
significantly different than the corresponding prior probability of having a trait.
We are interested in how the derived posterior probabilities using perturbed
statistics are different from those using the original statistics. We define the
average absolute relative error as γ(ε) = 1

K

∑K
j=1

|P (tk=1|rij=1)−P ε(tk=1|rij=1)|
P (tk=1|rij=1)

.
Our results show γ(2) = 0.0408 and γ(0.2) = 0.2282, which indicate the more
rigorous privacy protection incurs more loss of attack performance in terms of
accuracy.

We also use the differentially private statistics to run the identity inference
attack again on ‘CEU’ dataset. In Table 2, each row corresponds to some certain
number of traits the target individual has. The columns under label ‘Original’,
‘ε = 2’ and ‘ε = 0.2’ denote the average probability of correctly identifying

Table 2. Average probability of identity inference attack with different amount of
background knowledge.

|T�| P (ri = rv|T�)

Original ε = 2 ε = 0.2

ave std ave std ave std

1 0.0697 0.0321 0.0645 0.0275 0.0325 0.0075

2 0.1493 0.0312 0.1320 0.0576 0.0646 0.0229

3 0.2503 0.1138 0.2118 0.0916 0.0978 0.0497

4 0.3725 0.1578 0.3032 0.1348 0.1230 0.0923

5 0.5158 0.2047 0.4079 0.1911 0.1360 0.1484

6 0.6792 0.2565 0.5323 0.2657 0.1340 0.2200
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Fig. 1. Average Probability of Identity Inference Attack with Different Amount of
Background Knowledge. (Color figure online)

the target individual P (ri = rv|t�) calculated with original value of GWAS
statistics, the 2-differentially private GWAS statistics, and the 0.2-differentially
private GWAS statistics respectively. For each scenario, we use ‘ave’ and ’std’
to denote the mean and the standard deviation. We can easily observe from
Table 2 and Fig. 1 that the average probability of correctly identifying the target
individual P (ri = rv|t�) increases as the number of known traits increases under
three scenarios. This observation shows that the more background knowledge
the attacker has, the more likely the target individual can be identified. We are
interested in how the performance of the identity inference attack is affected
by the perturbed GWAS statistics. We can see that the attack performance
is significantly decreased when GWAS statistics are distorted under rigorous
privacy protection. For example, as the last row shows, when |T�| = 6, the
accuracy of the attack decreases from 0.6792 to 0.5323 (ε = 2), and further to
0.1340 (ε = 0.2). However, the probability (0.1340) that the target individual
being correctly identified under ε = 0.2 is still an order high than the probability
of random guess (0.0116).

5 Conclusions and Future Work

In summary, we constructed a Bayesian network from perturbed GWAS catalog
and explored whether an attacker can get the private information from public
population and to what extent if so. We evaluated two types of attacks, trait
inference attack and identity inference attack respectively. Both of these two
attacks derive private information by using the GWAS public catalog data that
capture the relationship between SNPs and their associated traits. Using both
simulated and real human genetic data, we found that both of these two attacks
can be real threat to the privacy of general population, even when the GWAS
statistics are already perturbed under differential privacy. In our future work,
we will further incorporate trait-trait relationships and/or SNP-SNP correlations
into our perturbed Bayesian network and develop new inference algorithms on
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the network. We aim to develop methods that could protect data privacy or
could release GWAS statistics with less threat for general population.
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