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Abstract. Recent work showed the necessity of incorporating a user’s
background knowledge to improve the accuracy of estimates from noisy
responses of histogram queries. Various types of constraints (e.g., lin-
ear constraints, ordering constraints, and range constraints) may hold
on the true (non-randomized) answers of histogram queries. So the idea
was to apply the constraints over the noisy responses and find a new set
of answers (called refinements) that are closest to the noisy responses
and also satisfy known constraints. As a result, the refinements expect
to boost the accuracy of final histogram query results. However, there
is one key question: is the ratio of the distributions of the results after
refinements from any two neighbor databases still bounded? In this pa-
per, we introduce a new definition, ρ-differential privacy on refinement,
to quantify the change of distributions of refinements. We focus on one
representative refinement, the linear refinement with linear constraints
and study the relationship between the classic ε-differential privacy ( on
responses) and our ρ-differential privacy on refinement. We demonstrate
the conditions when the ρ-differential privacy on refinement achieves the
same ε-differential privacy. We argue privacy breaches could incur when
the conditions do not meet.

Keywords: differential privacy, linear constraint, refinement, background
knowledge.

1 Introduction

Research on differential privacy [1, 2] has shown that it is possible to carry out
data analysis on sensitive data while ensuring strong privacy guarantees. Differ-
ential privacy is a paradigm of post-processing the output of queries. Differential
privacy is defined as a property of a query answering mechanism, and a query
answering mechanism satisfying differential privacy must meet the requirement
that the distribution of its noisy query responses change very little with the
addition or deletion of any record, so that the analyst can not infer the presence
or absence of some record from the responses. Formally, differential privacy uses
a user-specified privacy threshold ε to bound the ratio of the probabilities of the
noisy responses from any two neighbor databases (differing one record).

Recent work [3–5] showed the necessity of incorporating a user’s background
knowledge to improve the accuracy of estimates from noisy responses of his-
togram queries. Various types of constraints (e.g., linear constraints, ordering
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constraints, and range constraints) may hold on the true (non-randomized) an-
swers of histogram queries. So the idea was to apply the constraints over the
noisy responses and find a new set of answers (called refinements) that are clos-
est to the noisy responses and also satisfy known constraints. As a result, the
refinements expect to boost the accuracy of final histogram query results.

However, there is one key question: is the ratio of the distributions of the
results after refinements from any two neighbor databases still bounded? In this
paper, we introduce a new definition, ρ-differential privacy on refinement, to
quantify the change of distributions of refinements. We focus on one represen-
tative refinement, the linear refinement with linear constraints and study the
relationship between the classic ε-differential privacy (on responses) and our
ρ-differential privacy on refinement. We demonstrate the conditions when the
ρ-differential privacy on refinement achieves the same ε-differential privacy. We
argue privacy breaches could incur when the conditions do not meet.

2 Differential Privacy Revisited

We revisit the formal definition and the mechanism of differential privacy. We
denote the original database as D, and its neighboring database as D′. We will
concentrate on pairs of databases (D,D′) differing only in one row, meaning one
is a subset of the other and the larger database contains just one additional row.

Definition 1. (ε-differential privacy) [1]. A mechanism K is ε-differentially pri-
vate if for all databases D and D′ differing on at most one element, and any
subsets of outputs S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ eε × Pr[K(D′) ∈ S] (1)

Theorem 1. [1] For f : D → Rd, the mechanism Kf that adds independently
generated noise with distribution Lap(Δf/ε) to each of the d output terms satis-
fies ε-differential privacy, where the sensitivity, Δf , is Δf = maxD,D′‖f(D)−
f(D′)‖1 for all D, D′ differing in at most one element.

The mechanism for achieving differential privacy computes the sum of the true
answer and random noise generated from a Laplace distribution. The magnitude
of the noise distribution is determined by the sensitivity of the computation and
the privacy parameter specified by the data owner. Differential privacy maintains
composability, i.e., differential privacy guarantees can be provided even when
multiple differentially-private releases are available to an adversary, and can
extend to group privacy, i.e., changing a group of k records in the data set
induces a change of at most a multiplicative ekε in the corresponding output
distribution [6].

3 ρ-Differential Privacy on Refinement

In this section, we first describe the notations and then formally define refinement
based on background knowledge. We present definitions of unbiased refinement
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and constrained refinement. We finally introduce our key concept, ρ-differential
privacy on refinement, and use an illustrating example to show the differ-
ence between the proposed ρ-differential privacy on refinement and the classic
ε-differential privacy.In a differentially private query answering mechanism, the
analyst submits queries, the mechanism generates true values for the query, and
perturbs them with calibrated noise to derive the responses, then returns the
responses to the analyst. Usually, the analyst may possess some background
knowledge about the database. With background knowledge, the analyst can
refine the responses given by the mechanism, and may obtain more accurate
values for his queries.

3.1 Definition

We denote the original database as D, and its neighboring database as D′ which
differs from the original database by a single record. The vector-valued query is
denoted as Q, Q = (q1, q2, · · · , qn)T . We denote the true value from database
D for the query as μ, μ = (μ1, μ2, · · · , μn)

T , and the response from database D
for the query as X , X = (X1, X2, · · · , Xn)

T . And we denote the true value from
database D′ for the query as μ′, μ′ = (μ′

1, μ
′
2, · · · , μ′

n)
T , and the response from

database D′ for the query as X ′, X ′ = (X ′
1, X

′
2, · · · , X ′

n)
T . The randomization

mechanism satisfies ε-differential privacy, i.e., for an arbitrary set of integers
S = {i, j, . . . , k} ⊆ {1, . . . , n},

e−ε ≤ Pr[XS ]

Pr[X ′
S ]

≤ eε (2)

Assume that the user knows some background knowledge about D and D′

denoted by B and B′ respectively. For database D, we denote the estimated
value as ̂X derived by the analyst from the response using background knowl-
edge, ̂X = ( ̂X1, ̂X2, · · · , ̂Xn)

T , for database D′, we denote it as ̂X ′, ̂X ′ =

( ̂X ′
1, ̂X

′
2, · · · , ̂X ′

n)
T .

Definition 2. (Refinement) Given the background knowledge B on database

D, the refinement ̂X = ( ̂X1, . . . , ̂Xn)
T is the user’s estimation on the true value

of query Q(D) based on the response X: ̂X = rf(X |B,D).

Similarly, given response X ′ from D′, the refinement to estimate Q(D′) is ̂X ′ =
rf(X ′|B′,D′).

Definition 3. (UnbiasedRefinement)The refinement ̂X is unbiased ifE( ̂X) =
μ stands for any μ.

Definition 4. (Constrained Refinement) The refinement ̂X is a constrained

refinement if ̂X always satisfies the background knowledge B for any response X.

The two refinements, ̂X = ( ̂X1, . . . , ̂Xn) from D and ̂X ′ = ( ̂X ′
1, . . . , ̂X

′
n) from

D′, may be mapped to two disjoint spaces by the refinement function rf(). In this
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case, either the numerator or the denominator of ratio Pr( ̂X=x)

Pr( ̂X′=x)
is 0. However,

this difference is due to the refinement strategy and does not disclose any privacy
information.

Definition 5. (ρ-differential privacy on refinement) Given the refinements
̂X and ̂X ′ and an arbitrary set of integers S = {i, j, . . . , k} ⊆ {1, . . . , n}, define

̂XS = ( ̂Xi, ̂Xj, . . . , ̂Xk) and ̂X ′
S = ( ̂X ′

i,
̂X ′
j , . . . ,

̂X ′
k).

Let RS and R′
S be the sets of all possible values of ̂XS and ̂X ′

S respectively.
The refinement satisfies differential privacy, if RS ∩R′

S �= ∅ and for any subset
Ω ⊆ R ∩R′ the following inequality stands

e−ρ ≤ Pr[ ̂XS ∈ Ω]

Pr[ ̂X ′
S ∈ Ω]

≤ eρ. (3)

3.2 An Illustrating Example

Example 1. The analyst submits a vector-valued query Q, Q = (q1, q2)
T ,

max |μ − μ′| = 1, and σ = 1
ε . The analyst has the background knowledge that

μ1+μ2 = c and μ′
1+μ′

2 = c′. One method to refine the response is shown in (4):

̂X1 =
1

2
(X1 + c−X2), ̂X2 =

1

2
(X2 + c−X1). (4)

Equivalently expressed in matrix:

(

̂X1

̂X2

)

=

(

1
2 − 1

2− 1
2

1
2

)(

X1

X2

)

+

(

1
2
1
2

)

c (5)

The refinement in (5) belongs to constrained refinement. So we can calculate the

ratio Pr( ̂X1 = x1)/Pr( ̂X
′
1 = x1) to obtain the bound. First, from formula (5),

we derive the probability density function of ̂X1 and ̂X ′
1, shown in (6) and (7).

f
̂X1
(x1) =

1

2σ

∫

R

exp

{

−|2x1 + x2 − c− μ1|+ |x2 − μ2|
σ

}

dx2 (6)

f
̂X′
1
(x1) =

1

2σ

∫

R

exp

{

−|2x1 + x2 − c′ − μ′
1|+ |x2 − μ′

2|
σ

}

dx2 (7)

Without loss of generality, we assume that μ1 − μ′
1 = 1. When x1 is sufficiently

large, we can simplify formulas (6) and (7) to formulas (8) and (9) respectively.

f
̂X1
(x1) =

1

2σ
(σ + 2x1 − 2μ1) exp

{

−2(x1 − μ1)

σ

}

(8)

f
̂X′
1
(x1) =

1

2σ
(σ + 2x1 − 2μ′

1) exp

{

−2(x1 − μ′
1)

σ

}

(9)
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The ratio of the two PDFs can then be calculated as shown in (10), which tends
to be e2ε for large value of response X1.

f
̂X1
(x1)

f
̂X′
1
(x1)

=
(σ + 2x1 − 2μ1)

(σ + 2x1 − 2μ′
1)

exp

{

2(μ1 − μ′
1)

σ

}

=
(σ + 2x1 − 2μ1)

(σ + 2x1 − 2μ′
1)
e2ε → e2ε (as x1 → ∞) (10)

So we can conclude that the ratio between the distributions of refinements for
databases D and D′ could be different from the ratio between the distributions of
responses. In this example, the classic ε-differential privacy incurs 2ε-differential
privacy on refinement. �

4 Background Knowledge and Refinement Analysis

In this section, we formally the linear constraint based background knowledge
and conduct theoretical analysis on how refinement strategies affect differential
privacy on refinement. We will use the following scenario as a running example
throughout this section. Consider that a data publisher (such as a school) has
collected grade information about a group of students and would like to allow
the third party to query the data while preserving the privacy of the individuals
involved. Assume the analyst submits a simple vector query:Q =(qA, qB , qC , qD,
qF , qp, qt). qA, qB, qC , qD, and qF represent the numbers of students receiving
grades A, B, C, D, and F respectively; qp represents the number of passing
students (grade D or higher) and qt represents the query for the number of all
the students.

⎧

⎪

⎨

⎪

⎩

μA + μB + μC + μD − μp = 0

μF + μp − μt = 0

μA + μB = 80

(11)

The analyst may have the background knowledge in terms of the linear con-
straints shown in (11). The first two constraints are by the definition and inde-
pendent of the underlying database whereas the third constraint holds specifi-
cally on the current database.

The analyst may have the background knowledge in terms of the ordering
constraint, e.g., μA ≤ μp. Ordering constraint can also be enforced when the
user submits the vector query. For example, the analyst may submit a simple
ascending ordering query that shows the number of students in each category.
In other words, the analyst knows for sure that μ1 ≤ μ2 ≤ ... ≤ μn although the
responses may not hold the order constraints due to calibrated noises. Similarly
the range constraint denotes the true answer of a particular query is within some
finite range, e.g., μA ∈ [1, 10]. Range constraints are often implicitly used in the
post-process of noisy output. For example, users apply non-negative constraints
when dealing with responses with negative values for attributes like age or salary.
We will study these types of background knowledge in our future work.
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4.1 Refinement with Linear Constraint

Assume that the user knows m linear combinations of the true answers:

b1iμ1 + b2iμ2 + · · ·+ bniμn = ci, i = 1, . . . ,m.

Equivalently, bTi μ = ci, where bji is the j-th entry of bi. Let B = [b1, . . . , bm]
and c = (c1, . . . , cm)T .

Definition 6. (Linear Constraint) The background knowledge with linear
constraint can be expressed as

BTμ = c,

where B is an n×m matrix and c is an m-dimensional constant vectors.

Under the linear constraint based background knowledge, a constrained refine-
ment ̂X must satisfy BT

̂X = c for any response X .

Definition 7. (Refinement with Linear Constraint) The refinement ̂X is
linear if it can be expressed as

̂X = AX +Dc+ h, (12)

where A and D are n × n and n × m matrices respectively, and h is an n-
dimensional constant vector.

4.2 A General Result

Theorem 2. Suppose that the user possesses the linear background knowledge
BTμ = c and BTμ′ = c′ for database D and D′ respectively, and he implements
some constrained linear refinement as shown in (12) to estimate μ. Assume
rank(B) = m and rank(A) = r = n−m. Let U = (U1,U2) ,V = (V1,V2) , Σ =
(

Σ1 0
0 0

)

,be the SVD of A: A = UΣV T , and A∗ = V
(

Σ−1
1 0
0 Im

)

UT . Adding

noise from distribution Lap(σ), σ = ΔQ/ε, would result in

ρ =
ε‖A∗D(c− c′)− (μ− μ′)‖1

‖μ− μ′‖1 ,

where μ and μ′ are from the two databases that achieves ‖μ− μ′‖1 = ΔQ.

Proof. Let Ω = {ω1, . . . , ωk} ⊆ {1, 2, . . . , n}, and PΩ be the n × k matrix with
P (ωi, i) = 1 and 0 elsewhere. Similarly, Ω̄ = {1, . . . , n} − Ω. with n × (n − k)
matrix PΩ̄ defined likewise. We can rewrite the refinement function to

̂X = UΣV TX +Dc+ h.

Let Z =
(

Z1

Z2

)

=
(

Σ1 0
0 I

)

V TX . With V T = V −1 and |V | = 1, we can have that
the PDF of Z is

fZ(z) =
1

|Σ1|fX(V Σ∗z), where Σ∗ =

(

Σ−1
1 0
0 I

)

.
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Let W = UZ, S = ̂X − Dc − h = U1Z1, and T = U2Z2. Then, W = S + T ,
S ∈ U∞, S ∈ U∈, and the PDF of W is given by

fW (w) =
1

|Σ1|fX(V Σ∗UTw) =
1

|Σ1|fX(A∗w).

Notice that S and T are actually the projection of W onto the space spanned
by U1 and U2 respectively, and the two spaces are orthogonal. For any s ∈ U∞
and t ∈ U∈, W = s+ t would always give S = s. Therefore, if s ∈ U∞, the PDF
of S is given by

fS(s) =
1

|Σ1|
∫

U∈

fX [A∗(s+ t)]dt =
1

|Σ1|
∫

fX
[

A∗ (s+ U
(

0
z2

))]

dU
(

0
z2

)

=
1

|Σ1|
∫

fX (A∗s+ V2z2) dz2.

Hence, the PDF of ̂X can be given by

f
̂X(x) =

1

|Σ1|
∫

fX [A∗(x−Dc− h) + V2z2] dz2,

if UT
2 (x−Dc− h) = 0, and f

̂X(x) = 0 otherwise.

Similarly, the PDF of ̂X ′ is given by

f
̂X′(x) =

1

|Σ1|
∫

fX′ [A∗(x−Dc′ − h) + V2z2] dz2,

if UT
2 (x−Dc′ − h) = 0, and f

̂X(x) = 0 otherwise.

Notice that ̂XΩ = PT
Ω
̂X , ̂XΩ̄ = PT

Ω̄
̂X and ̂X = PΩ

̂XΩ + PΩ̄
̂XΩ̄. The PDF of

̂XΩ can be expressed as

f
̂XΩ

(xΩ) =
1

|Σ1|
∫∫

D(xΩ)

dz2dxΩ̄fX [A∗ (PΩxΩ + PΩ̄xΩ̄ −Dc− h) + V2z2] ,

(13)

where D(xΩ) = {xΩ̄ : UT
2 (PΩxΩ + PΩ̄xΩ̄ −Dc− h) = 0}.

The PDF of ̂X ′
Ω can be derived in a similar manner. When the ratio of the

integral kernels in (13) is bounded, i.e.,

e−ε ≤ fX [A∗(x−Dc− h) + V2z2]

fX′ [A∗(x−Dc′ − h) + V2z2]
≤ eε, (14)
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the ratio of the integrals, f
̂XΩ

(xΩ)/f ̂X′
Ω
(xΩ), is also bounded by [e−ε, eε]. Note

that fX and fX are the Laplace distribution p.d.f., and hence

f
̂XΩ

(xΩ)

f
̂X′
Ω
(xΩ)

≤ fX [A∗(x−Dc− h) + V2z2]

fX′ [A∗(x−Dc′ − h) + V2z2]

≤ exp{ 1
σ ‖A∗(x−Dc− h) + V2z2 − μ‖1}

exp{ 1
σ‖A∗(x−Dc′ − h) + V2z2 − μ′‖1}

≤ exp

{

± 1

σ
‖A∗D(c− c′)− (μ− μ′)‖1

}

.

Therefore, when the noise is added according to the classical schema , i.e., take
σ = ΔQ

ε = 1
ε‖μ−μ′‖1, we can have f

̂XΩ
(xΩ)/f ̂X′

Ω
(xΩ) is bounded by e±ρ where

ρ =
ε‖A∗D(c− c′)− (μ− μ′)‖1

‖μ− μ′‖1 . 
�

A special case of the above result is that ρ = ε when c = c′ (no difference
on constants of linear background constraints over two neighbor databases).
However, in practice, c could be different from c′ (refer to the example shown in
Appendix), the ρ-differential privacy on refinement is generally different from the
ε-differential privacy. A direct result from the above theorem is that, in order
to guarantee e−ε ≤ f

̂XΩ
(xΩ)/f ̂X′

Ω
(xΩ) ≤ eε, we can choose σ = 1

ε maxD,D′

‖A∗D(c− c′)− (μ− μ′)‖1.

4.3 The Best Linear Refinement

Consider the following least square refinement based on the linear background
knowledge:

min ‖ ̂X −X‖2 s.t. BT
̂X = c. (15)

Theorem 3. The least square refinement from the optimization problem in (15)
is given by

̂X =
[

I −B(BTB)−1BT
]

X +B(BTB)−1c. (16)

The refinement shown in (16) is a constrained unbiased refinement. It has the

minimum variance of ̂Xi, i = 1, . . . , n, among all linear unbiased refinements.

Proof. The Lagrange function of (16) is

L = ( ̂X −X)T ( ̂X −X)− 2Λ(BT
̂X − c).

Taking ∂L
∂ ̂X

= 0, we can have ̂X = X +BTΛ, and hence

BT
̂X = BT (X +BΛ) = c

Λ = (BTB)−1(c −BTX)

̂X = X +B[(BTB)−1(c−BTX)]
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Equivalently, ̂X can be expressed as follows:

̂X = [I −B(BTB)−1BT ]X +B(BTB)−1c.

Next, we show that ̂X is a unbiased constrained refinement:

BT
̂X = BTX −BTB(BTB)−1BTX +BTB(BTB)−1c = c.

E( ̂X) = [I −B(BTB)−1BT ]E(X) +B(BTB)−1c

= μ−B(BTB)−1BTμ+B(BTB)−1c = μ.

Next, we prove the minimal variance property. We use M to denote the matrix
I − B(BTB)−1BT . Then we have M = MT , MMT = M . We can further
show that (A− I)M = 0. Notice that the following equalities stand for any μ,

E( ̂X) = AE(X) +Dc+ h ⇒ μ = Aμ+DBTμ+ h.

We can thus have I −A = DBT and h = 0. Therefore,

(A− I)M = −DBT [B(BTB)−1BT − I] = 0.

Since Cov( ̂X) = ACov(X)A′ = 2σ2AAT , V( ̂Xi)/2σ
2 is the i-th diagonal entry

of matrix AAT . With MMT = M and (A− I)M = 0, we can have

AAT = [(A−M) +M ][(A −M)T +MT ] = (A−M)(A −M)T +M .

Since (A−M)(A−M)T is the semi-positive definite matrix, and the the diagonal
entries are non-negative, and hence (AAT )ii ≥ Mii with A = M minimizes
(AAT )ii, i = 1, . . . , n.

5 Conclusion and Further Discussion

In this paper we have introduced a new definition, ρ-differential privacy on re-
finement, to quantify the change of distributions of results after refinements.
We focus on one representative refinement, the linear refinement with back-
ground knowledge as linear constraints and investigate the relationship between
the classic ε-differential privacy (on responses) and our ρ-differential privacy on
refinement.

Three techniques were proposed to use constraints to boost accuracy of an-
swering range queries over histograms [3–5]. The refinement approach (also called
constrained inference) [3] focused on using consistency constraints, which should
hold over the noisy output, to improve accuracy for a variety of correlated his-
togram queries. The idea was to find a new set of answers q̄ that is the closet set
to the set of noisy answers q̃ and that also satisfies the consistency constraints.
The proposed approach, the minimum least squares solution, was a special case
of our linear refinement with linear constraints presented in this paper. Hay et al.
in [3] also showed that the inferred q̄ based on the minimum L2 solution satisfies
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ε-differential privacy. In our work, we introduced the general linear refinement
and showed the conditions on when the refinement based on the general linear
constraints achieves the same ε-differential privacy as defined over distributions
of responses. The authors extended to refine degree distribution of networks un-
der the context of publishing private network data [7]. Xiao et al. in [4] proposed
an approach based on the Haar wavelet. In [5], the authors unified the two ap-
proaches [3, 4] in one general framework based on the matrix mechanism that
can answer a workload of predicate counting queries.

One key question is whether background knowledge can be exploited by ad-
versaries to breach privacy. It is well known that for the pre-processing based
privacy preserving data mining models, several works [8, 9] showed the risks of
privacy disclosure by incorporating a user’s background knowledge in the rea-
soning process. In contrast, in the context of differential privacy, the authors
in [1, 2] stated that differential privacy provides formal privacy guarantees that
do not depend on an adversary’s background knowledge (including access to
other databases) or computational power. In [10], the authors gave an explicit
formulation of resistance to background knowledge. The formulation follows the
implicit statement: Regardless of external knowledge, an adversary with access
to the sanitized database draws the same conclusions whether or not my data
is included in the original data. They presented a mathematical formulation of
background knowledge and belief. The belief is modeled by the posteriori distri-
bution: given a response, the adversary draws his belief about the database using
Baye’s rule to obtain a posterior refinement. In [3–5], the authors also stated that
the refinement has no impact on the differential privacy guarantee. This is be-
cause the analyst performs the refinement without access to the private data,
using only the constraints and the perturbed responses. The perturbed responses
are simply the output of a differentially private mechanism and post-processing
of responses cannot diminish the rigorous privacy guarantee.

In [11], the authors examined the assumptions of differential privacy from the
data generation perspective and proposed a participation-based guideline - does
deleting an individual’s tuple erase all evidence of the individual’s participation
in the data-generation process? - for determining the applicability of differential
privacy. They showed that the privacy guarantee from differential privacy can
degrade when applied to social networks or when deterministic statistics (of a
contingency table) have been previously released. The deterministic statistics
can be modeled as linear constraints with fixed c values. In this case, c could be
different from c′. Based on our Theorem 2, the ρ-differential privacy on refine-
ment is different from the ε-differential privacy and we have to add larger noise
to prevent privacy breaches. In practice, the adversary may possess any kind of
background knowledge, which may even include the a-priori knowledge of the
exact values of all other n−1 individuals. We refer readers to the example shown
in Appendix where the adversary can exploit the background knowledge of the
other n− 1 individuals in the database to infer the value of a specific individual.
We argue that the privacy breach is caused by the combination of the random-
ization mechanism and the background knowledge. In our future work, we would



On Linear Refinement of Differential Privacy-Preserving Query Answering 363

explore whether refinements with some particular background knowledge (e.g.,
ordering or range constraints) can incur privacy breaches, i.e., enabling the ad-
versary to draw significantly different beliefs about the databases.
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A Appendix

A.1 Example When c �= c′

Database D with n records is obtained by adding one record to database D0.
Every record in D belongs to one of two categories. The attacker knows that
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in D0, kμ1 = μ2, where μi denotes the count of category i in D0, i = 1, 2.
The added record belongs to either of the two categories, denoted by D′ and
D′′ respectively. Let μ′ =

(

μ′
1

μ′
2

)

and μ′′ =
(

μ′′
1

μ′′
2

)

be the counts of D′ and D′′

respectively. The background knowledge can be expressed as:

if D′ is true: kμ′
1 − μ′

2 = BTμ′ = c′ = k,

if D′′ is true: kμ′′
1 − μ′′

2 = BTμ′′ = c′′ = −1,

where B =
(

k−1

)

.
Response X = (X1, X2) is obtained by adding noise Lap(2ε ). Next, we show

that, forD′ andD′′, the refinements ̂X ′ and ̂X ′′ do not satisfy differential privacy.
Consider the following refinement:

For D′ : ̂X1 =
X1 +X2 + k

k + 1
, and ̂X2 = X2; (17)

For D′′ : ̂X1 =
X1 +X2 − 1

k + 1
, and ̂X2 = X2. (18)

Comparing (17) and (18) with the general linear refinement formula in (12), we
can have

A =

(

1
k+1

1
k+1

0 1

)

, D =

(

1
k+1

0

)

, and h =

(

0
0

)

.

When X1 satisfies x1 ≥ μ′
1+μ′

2+k
k+1 , we can have

f
̂X′
1
(x1) =

∫

R

fX1(z)fX2 [(k + 1)x1 − k − z]dz

∝
∫

R

exp

{

−|z − μ′
1|+ |z − (k + 1)x1 + k + μ′

2|
σ

}

dz

=exp

{

n+ k − (k + 1)x1

σ

}

[(k + 1)x1 − k − n]

(note n = μ′
1 + μ′

2).

For D′′, we can similarly have that when x1 ≥ μ′′
1 +μ′′

2 −1
k+1 ,

f
̂X′′
1
(x1) ∝ exp

{

n− 1− (k + 1)x1

σ

}

[(k + 1)x1 + 1− n].

With σ = 2
ε (satisfying ε-differential privacy), we can have:

lim
x1→∞

f
̂X′
1
(x1)

f
̂X′′
1
(x1)

= exp

[

(k + 1)ε

2

]

.

Therefore, the ratio f
̂X′
1
/f

̂X′′
1
reaches e

(k+1)ε
2 for sufficiently largeX1+X2, which

indicates the adversary can tell which database of D′ and D′′ the response is
from. In other words, the adversary can derive the value of the added record by
refinement.
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