
Using Aggregate Human Genome Data for
Individual Identification

Yue Wang, Xintao Wu, Xinghua Shi
College of Computing and Informatics

University of North Carolina at Charlotte, USA
Email: {ywang91,xwu,x.shi}@uncc.edu

Abstract—Data privacy in genome-wide association studies
(GWAS) is a critical yet under-exploited research area. In this
paper, we first provide a method to construct a two-layered
bayesian network explicitly revealing the conditional dependency
between SNPs and traits, from the public GWAS catalog. Then
we develop efficient algorithms for two attacks: identity inference
attack and trait inference attack based on reasoning with the
dependency relationship captured in the constructed bayesian
network. Different from previously proposed attacks, the possible
target of our attacks may be any common people, not limited
to GWAS participants. The empirical evaluations show that
unprotected statistics released from GWAS can be exploited by
attackers to identify individual or derive private information.
Thus we show that mining GWAS statistics threatens the privacy
of a much wider population and privacy protection mechanisms
should be employed.

Keywords—Genome-wide association study; privacy; Bayesian
network;

I. INTRODUCTION

Genome-wide association studies (GWAS) have received
intensive attention due to the rapid decrease of genotyping
costs and promising potential in genetic diagnostics. GWAS
typically focus on associations between single-nucleotide poly-
morphisms (SNPs) and human traits like common diseases. It
has been shown that many chronic diseases and various cancer
types have genetic disposition factors.

In the general biomedical community, it is usually assumed
that statistics (e.g., allele frequency) from SNP data can not
be used to identify individuals and hence be safe to release.
However, the findings in [1] showed that GWAS statistics do
not completely conceal identity since it is straightforward to
assess the probability a person participated in a GWA study.
The proposed method [1] measures the difference between the
distance of the individual from a reference population and that
from the mixture.

In this paper, we are focused on a related but different
privacy protection problem, i.e., whether and to what extent
GWAS statistics can be exploited by an attacker to learn
private information of regular people (rather than those GWAS
participants). Specifically, we study two potential attacks: 1)
trait inference attack that aims to infer the probability of a
target developing some private trait when the target’s SNP
profile is available to the attacker; and 2) identity inference
attack that aims to infer the probability of a record in an
anonymized genebank database belonging to the target when
some traits of the target are available.

Both attacks pose a serious threat to individuals when their
SNP profiles are exploited by attackers. Many organizations
such as biobanks, hospitals, research consortia and pharma-
ceutical companies collect and publish DNA sequence and
SNP data. For example, 1000 genome project [2] provides the
public with free services like browsing and downloading DNA
sequence, SNP genotypes and other types of data from over
a thousand anonymous participants in different populations.
In trait inference attack, the attacker such as an insider from
the organizations is assumed to know the whole or part of
a target individual’s SNP profile and aims to predict some
sensitive trait (e.g., disease) of the target individual. In identity
inference attack, we assume the attacker such as an outsider
has access to the anonymized DNA sequence dataset which
contains the target individual’s record and aims to identify
the target individual’s record from the anonymized dataset.
We also assume the attacker knows some traits of the target
individual. For example, it was shown in [3] that private
traits and attributes of individuals are predictable from easily
accessible digital records of behavior such as Facebook Likes.
Other patient social networks and online communities like ‘pa-
tientlikeme.com’ provide a platform for users (mostly patients)
to connect with others who have the same disease or condition
and share their own experiences. The data generated in such
process may also have potential risks in that the data can be
used by the attacker to learn the private traits and attributes of
individuals.

Our contributions are as follows.

• We develop a method to build a two-layer bayesian
network from the released GWAS statistics. The con-
structed bayesian network explicitly reveals the con-
ditional dependency between SNPs and traits, and can
be used to compute the probability distribution for
any subset of network variables given the values or
distributions for any subset of the remaining variables.

• We then formulate two attacks, namely trait inference
attack and identity inference attack, as two inference
problems based on the dependency relationship cap-
tured in the bayesian network, and develop efficient
formulas and algorithms to infer the probability of
attacks.

• We conduct empirical evaluations of the proposed
methods. Our results show that unexpected privacy
breaches can occur because aggregation statistics pro-
vide no explicit security guarantees and these statistics
could be exploited by attackers to identify individuals
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or derive private information.

II. BACKGROUND ON GWAS CATALOG AND STATISTICS

Case-control studies under the GWAS framework are usu-
ally conducted by comparing the genotypes of two groups
of participants: individual with the disease (case group) and
matched individuals without the disease (control group). Each
individual is genotyped by microarray or sequencing platforms.
Dependent on genotyping platform, the number of SNPs
genotyped in a GWAS setting typically ranges from tens of
thousands to tens of millions. From genotype data, we can
view that an SNP locus has two possible alleles, a risk allele
and a non-risk allele. The risk allele is the allele that is more
frequent in the case group comparing with the control group.

In a GWAS process, SNP profile data is firstly generated
by genotyping the individuals in cases and controls. Secondly,
Allele frequency for each of those SNPs over the case group
and the control group is calculated respectively and a statistical
test is performed on a contingency table to investigate if the
allele frequencies are significantly different in cases versus
controls. The odds ratio, which is defined as the ratio of the
proportion of individuals in the case group having a specific
allele, and the proportion of individuals in the control group
having the same allele, is often used to report the difference.
When the allele frequency in the case group is much higher
than in the control group, the odds ratio will be higher than 1.
Additionally, a p-value for the significance of the odds ratio
is typically calculated using a simple chi-squared test. Finding
SNPs whose odds ratios are significantly different from 1 is
the objective of the GWAS because those SNPs are associated
with the trait. Finally, those SNPs that are associated with the
trait, along with the statistics (e.g. p-value and odds ratio) are
reported. These reported SNPs, along with information about
the study, the trait, specific SNP information (e.g. identifier,
position, and the risk allele type), and statistics, are later
collected and curated at the National Human Genome Research
Institute (NHGRI) GWAS catalog [4].

III. CONSTRUCTING A BAYESIAN NETWORK FROM
GWAS

In this section, we present how to build a two-layered
bayesian network from the aforementioned GWAS catalog.
The constructed bayesian network, which explicitly captures
the conditional dependency between SNPs and traits, will be
used as background knowledge for inference attacks.

A. Knowledge from GWAS Catalog

Some of the information publicly available from the
NHGRI GWAS catalog, can be directly used to construct
the bayesian network. Such information includes trait/disease
name, the related SNPs and corresponding risk allele type, the
risk allele frequency in control group and statistics like odds
ratio in the association test of each SNP. Formally, we can
extract the following data from the GWAS catalog: a trait set
T , which contains m traits, and an SNP set S, which contains
n SNPs. For each specific trait Tk ∈ T , we have a subset of
associated SNPs. For each associated SNP Sj , we can extract
its corresponding risk allele type (rSNPkj) associated trait Tk,

the odds ratio Okj of the association test, and the risk allele
frequency in the control group f t

kj .

Though not directly given in the GWAS catalog, the risk
allele frequency in the case group can be derived from the
corresponding odds ratio and the risk allele frequency in the
control group. For an SNP Sj associated with a trait Tk, its
odds ratio is

Okj =
f c
kj(1− f t

kj)

f t
kj(1− f c

kj)
(1)

With the released values of the odds ratio (Okj) and the
risk allele frequency in the control group f t

kj , the risk allele
frequency in the case group f c

kj can be derived as

f c
kj =

Okj · f t
kj

Okj · f t
kj + 1− f t

kj

(2)

Lemma 1. The background knowledge that an attacker can
obtain from the GWAS catalog [4] includes: a trait set T , an
SNP set S, the risk allele type (rSNPkj), the odds ratio Okj ,
and the risk allele frequency in the control group f t

kj for each
pair of trait and its associated SNPs.

B. Two-layered Bayesian Network Construction

In GWAS, we can distinguish between two different sets
of variables: the set T of the m traits, Tk, and the set S of the
n SNPs, Sj . Each trait Tk is a binary random variable taking
values in the set {tk, t̄k}, where tk(t̄k) stands for the presence
(absence) of the trait of a participant. Similarly, each SNP Sj

has its domain in the set {sj , s̄j}, where sj stands for the SNP
has the risk allele and s̄j otherwise.

We construct a bayesian network to represent the con-
ditional dependencies between traits and SNPs, with the
background knowledge shown in Lemma 1. The constructed
network is composed of two layers, the trait layer and the
SNP layer, with edges only going from trait nodes to SNP
nodes. As shown in Figure 1, in such a network, each node at
the top level denotes a specific trait; while each node at the
second level denotes an SNP. If an SNP(Sj) is associated with
a trait(Tk), a directed edge is added from Tk to Sj .

Fig. 1. A Two-layered Bayesian Network of Traits and
Associated SNPs

The next step to completely specify a bayesian network is
to determine the conditional probability table stored at each
node. Firstly, we need to acquire the prior probability of each
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TABLE I. Probability Function for SNPs with single Parent
Trait

P (S1|T1)
T1

t1 t̄1

S1
s1 fc

11 f t
11

s̄1 1− fc
11 1− f t

11

trait node at the top level of the network. The prevalence
of a trait Tk in the population can be obtained from the
literature or internet. We treat it as the prior probability that
one individual has this trait, denoted as P (tk). Secondly, we
need to determine the conditional probability table of each
SNP node at the second level. There are two types of SNP
nodes in terms of dependency relationship with traits: a) SNP
nodes which have a single parent trait node, e.g., S1, S2 in
Figure 1; and b) SNP nodes which have more than one parent
trait node, e.g., Sj in Figure 1.

For those SNP nodes with a single parent trait node, we
can specify the values of the conditional probability table
associated with each SNP node by its risk allele frequency
in the control group and the risk allele frequency in the case
group. An example for node S1 is shown in Table I. The
probability of the risk allele of SNP S1 given the presence
of the trait T1, P (s1|t1) equals the risk allele frequency in
the case group f c

kj . Note that the conditional probability table
of S2 can be specified in the same way as S1, although S2

shares the parent trait node T2 with other SNP nodes (i.e., S3

and S4).

For the SNP nodes with multiple parent trait nodes, the
conditional probability table cannot be built from the GWAS
catalog directly. Instead, the value of each cell in the condi-
tional probability table, which represents one of the possible
combinations of its parent nodes being true or false, can be
calculated based from Lemma 2.

Lemma 2. (Conditional probability for SNPs with multiple
parent trait nodes) For a specific risk SNP Sj associated with
a subset of traits Parent(Sj), we have

P (Sj |Parent(Sj)) =

∏
Tk∈Parent(Sj) P (Sj |Tk)

P q−1(Sj)
, (3)

where q is the number of elements in Parent(Sj). Specifically,
when Sj is associated with two traits Tk, Tl, we have

P (Sj |Tk, Tl) =
P (Sj |Tk) · P (Sj |Tl)

P (Sj)
(4)

In Lemma 2, we assume that the traits are conditionally
independent with each other, given the SNPs they are both
associated with. The probability that one allele of an SNP
appears in the population can be found from an NCBI website1.

With the bayesian network constructed from the GWAS
catalog, we can calculate(predict) the joint probability for
any desired assignment of values to variables sets S (SNPs),
T (traits), for example < s1, s2, ..., s|S|, t1, t2, ...t|T | >, fol-
lowing Lemma 3. In the original reasoning process in the
bayesian network, we need to involve all of the other variables

1http : //www.ncbi.nlm.nih.gov/snp/

to calculate P (S,T ). By marginalization of summing out
‘irrelevant’ variables, we achieve the form in Lemma 3.

Lemma 3. The joint probability for any desired assignment
of values to variables sets S (SNPs), T (traits), for example
< s1, s2, ..., s|S|, t1, t2, ...t|T | >, can be calculated using
Equation 5. Note that we can apply this equation to any
other assignment of values, simply changing si/tj to s̄i/t̄j
accordingly.

P (S,T ) = P (s1, s2, ..., s|S|, t1, t2, ...t|T |)

=
∑

Tk∈{tk,t̄k}

(

|S|∏
i=1

P (si|Parent(Si))

|T |∏
j=1

P (tj)

|T ′|∏
k=1

P (Tk))

(5)
where T ′ denotes the set of all the other parent traits of the
SNPs in S except for those already contained in T .

Additionally, we can calculate(predict) the conditional joint
probability for any desired assignment of values to variables
sets Sx,Tx given the observed assignment of variables sets
Sy,Ty following Theorem 1. Note that Sx and Sy denote the
set of SNPs; while Tx, Ty denote the set of traits.

Theorem 1. (Inference via a GWAS Bayesian Network) The
joint probability for any desired assignment of values to
variables in Sx,Tx given the (observed) assignment of values
to variables in Sy,Ty can be derived from Equation 6.

P (Sx,Tx|Sy,Ty) =
P (Sx,Tx,Sy,Ty)

P (Sy,Ty)
(6)

where the joint probability P (Sx,Tx,Sy,Ty) and P (Sy,Ty)
can be calculated following Lemma 3.

IV. INFERENCE ATTACKS BASED ON A TWO-LAYERED
BAYESIAN NETWORK

A. Trait Inference Attack

In this attack scenario, we assume that an attacker has
stolen genotype profile of the target. Formally, we represent the
genotype of a target v as a vector, rv = (rv1, rv2, · · · , rvn),
with each entry rvj denoting the allele type of SNP j. The
attacker aims to derive the probabilities that the victim has
specific traits using the constructed bayesian network.

Definition 1. (Trait Inference Attack) Assume that the attacker
has the genotype profile rv of the target v. The attacker aims
to learn the posteriori probability P (tk|rv) that the target has
a specific trait Tk given the target’s genotype profile rv using
the constructed bayesian network.

The probability of the prevalence of a specific trait, which
is retrievable from the literature or the internet, is used as
the prior probability that the target has the specific trait. The
attacker can improve his/her guess by calculating the posterior
probability of the target having the trait by inferring from with
the target’s genotypes.

The attacker can calculate the posterior probability of the
target having a particular trait (P (tk|rv)), using the victim’s
genotype information (rv) and Lemma 4.

Lemma 4. (Trait Development Risk Estimation With Several
Related SNPs) The posteriori probability P (tk|rv) can be
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calculated following Equation 6, specifically with Sx,Ty = ∅,
Tx = Tk = tk. Based on conditional independence, we have
Sy that contains only the SNPs associated with Tk, where the
value assignment of SNP genotypes is equal to the correspond-
ing genotype record of the target individual.

In the attack scenario described in Algorithm 1, the attacker
intends to find out the possibility that the victim has certain
trait, according to his/her genotype and the GWAS catalog
information.

Algorithm 1 Trait Inference
Input: The genotype profile rv of an individual v, the GWAS
Bayesian Network G, the trait set T
Output: The probability P (Tk|rv) that the individual has any
trait in T

1: for each trait Tk in T do
2: Search G for Tk and obtain the associated SNPs {Sj}

(j=1..m) and corresponding risk allele type;
3: Extract the subgraph of Tk, SNP set {Sj} (j=1..m)

and all the other parent traits of these SNPs from the
constructed bayesian network.

4: Obtain the binary values of rvj for each j from 1 to
m according to whether the victim has the risk allele type
of each Sj in rv;

5: Calculate P (Tk|rv) following Lemma 4.
6: end for

B. Identity Inference Attack

In identity inference attack, we assume that the attacker
has access to an anonymized genotype dataset that con-
tains the target’s genotype record. Formally, we denote the
anonymized genotype profile dataset as R, where each record
ri = (ri1, ri2, · · · , rin) represents the genotype profile of an
anonymized individual i. We assume that the genotype profile
of the target rv is contained in R, and the attacker knows TS ,
a subset of traits the target has.

Definition 2. (Identity Inference Attack) Given the anonymized
genotype profile dataset R which contains the target’s geno-
type record rv , and a subset of the target’s traits, TS , the at-
tacker aims to learn the posteriori probability P (ri = rv|TS)
that the genotype record ri corresponds to the target using the
constructed bayesian network.

With the bayesian network constructed in the previous
section, we can naturally acquire the probability that an
individual has a specific allele type for an SNP given his/her
associated trait information. Lemma 5 shows how to calculate
the possibility that a record in the dataset belongs to the target
given his specific traits. The proof is straightforward based on
Theorem 1 and we skip it due to space limit.

Lemma 5. For each genotype record, the probability that ri
belongs to the target v is

P (ri = rv|TS) =

∏|ri|
j=1 P (rij |TSj

)∑|R|
i=1

∏|ri|
j=1 P (rij |TSj

)
(7)

where TSj
denotes the parent trait nodes of Sj in the bayesian

network. P (rij |TSj
) can be acquired from the bayesian net-

work.

Algorithm 2 describes a possible approach an attacker
could take to identify the target individual’s record in the
dataset. Based on this approach, the attacker can also infer
other private information of the target individual.

Algorithm 2 Identity Inference
Input: The genotype profile dataset R = {r1, r2, ..., rn}
containing the target individual’s genotype record(rv), the trait
set {T1, T2, ..., Tl} that the target individual has, the GWAS
catalog bayesian network G
Output: The probability of each record in R belonging to the
target individual P (ri = rv)

1: for each trait Tk in set {T1, T2, ..., Tl} do
2: Search G for Tk and obtain the associated SNPs

Sj(j ∈ [1,m]) and the corresponding risk allele type;
3: end for
4: for each record ri in R do
5: Calculate the probability that ri belongs to the target

individual following Lemma 5.
6: end for

C. New Trait Inference

After deriving the probability that each record in the
genotype dataset belongs to the target individual, the attacker
can further derive any other trait that the target may have,
based on the genotype information contained in the dataset.
We formalize such new trait inference in Lemma 6.

Lemma 6. Assume that the genotype profile of the target, rv ,
is contained in a genotype profile dataset R. The attacker has
access to R where each record ri = (ri1, ri2, · · · , rin) denotes
the genotype profile of an individual i. The attacker also knows
the target individual has a subset of traits, TS . The probability
that the target has a new trait Tnew can be derived as

P (Tnew|rv ∈ R,TS) =

|R|∑
i=1

P (ri = rv)× P (Tnew|ri)

=

|R|∑
i=1

P (ri = rv|TS)× P (Tnew|ri)

(8)

where P (Tnew|ri) can be derived following Lemma 4 and
P (ri = rv|TS) can be derived following Lemma 5.

V. EVALUATION

We evaluate our methods using data extracted from the
online NHGRI GWAS catalog [4] as of May 21, 2013. This
version of the GWAS catalog includes 1,607 publications and
12,520 records about 10,133 SNPs associated with 834 traits.
Publications included in such a catalog are limited to those
attempted to assay at least 100,000 SNPs in the initial stage.
SNP-trait associations listed are limited to those with p-values
less than 10−5.

Table II shows the information and statistics of a snapshot
of our constructed two-layer bayesian network from the GWAS
catalog. There are 6 traits and 9 associated SNPs, which were
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TABLE II. Attack Background Information

Index Trait Sj − sj f t
kj Okj fckj P (tk)

1
Chronic obstructive pulmonary disease

rs9394152− C 0.41 22.22 0.9392
0.052 rs73717741−G 0.07 11.9 0.4725

3 rs10928927− C 0.16 17.54 0.7696
4 Drug-induced liver injury (flucloxacillin) rs2395029−G 0.05 45 0.703 0.00008
5 Jaw Osteonecrosis rs1934951− T 0.12 12.75 0.63 0.056
6 Osteoarthritis rs12982744− C 0.61 11.11 0.9456 0.036
7

Height(taller than 90% of population)
rs12982744−G 0.4 33.33 0.9569

0.108 rs7853377−G 0.23 50.0 0.9372
9 rs7567288− C 0.2 33.33 0.8929
10 Eye color (Green) rs12913832−A 0.23 8.43 0.7158 0.16

TABLE III. Posterior Probability of Certain Trait
Considering one SNP

Index n1 P (T |rij = sj) n0 P (T |rij = s̄j) P (tk|rij)
1 58 0.1076 27 0.0054 0.0751
2 15 0.2621 70 0.0290 0.0701
3 20 0.2020 65 0.0142 0.0584
4 10 0.0011 75 2.5E − 5 1.5E-4
5 27 0.2389 58 0.0240 0.0923
6 28 0.0546 57 0.0203 0.0316
7 57 0.1744 28 0.0078 0.1195
8 6 0.3117 79 0.0100 0.0313
9 3 0.3316 82 0.0175 0.0286
10 37 0.3721 48 0.0657 0.1991

reported from from six previous GWAS publications. For each
SNP-trait pair, the risk allele type, risk allele in the control
group and the odds ratio are shown in Columns 3-5. We
calculate the risk allele frequency in the case group for each
SNP-trait pair and show the result in Column 6. Note that there
is a big gap (around 0.5) between the risk allele frequency in
the case group and that in the control group. We also acquire
the prior probability (prevalence) of each trait, P (tk), from the
original studies or Wikipedia.

A. Trait Inference Attack

With the constructed bayesian network, the attacker can
then run the trait inference attack(Algorithm 1) to calculate the
posterior probability that the target individual has a trait given
his/her genotype profile. In our evaluation, we use the genotype
profiles of the 85 HapMap individuals from Utah residents with
Northern and Western European ancestry (CEU) in the 1000
Genomes Project [2]. In addition to their genotype profiles, the
race and gender information is also publicly available.

Table III shows the estimation results calculated from
Lemma 4. Each row in Table III corresponds to the row
with the same index in Table II. Column P (tk|rij) gives the
average probability that the 85 CEU participants from the
1000 Genomes Project has each trait. We can see that most
of the average probabilities (with bold font) are higher than
the corresponding prior probability of having a trait. Columns
n1 and n0 respectively represent the number of individuals
who have and doesn’t have the risk allele type listed in the
corresponding row of Table II. Columns P (tk|rij = sj)
and P (tk|rij = s̄j) respectively represent the the posterior
probability of one individual has a trait if he/she has the risk

allele type, or doesn’t have the risk allele type of one specific
SNP corresponding to the trait.

B. Identity Inference Attack

In the example of the identity inference attack illustrated
in Algorithm 2, we also use the genotype data of 85 CEU
individuals from the 1000 Genomes Project [2]. In our exper-
iment, we assume that the target has traits of green eyes and
top 10% height and all other traits list in Table II. That is to
say, the trait set for the target has six elements.

We randomly generate the genotype record for the target
individual. The generating strategy is that for each SNP Sj

associated with one trait Tk, we generate rij = sj with
the probability P (sj |tk). Next we blend the generated record
into the dataset containing the genotype records of the 85
CEU individuals. Finally, we calculate the possibility that
the generated record is identified as belonging to the target
individual, given the background trait information. We also
compare the inference capability with different amount of
background knowledge, i.e., with the size of trait set ranging
from one to six.

Fig. 2. Average Probability of Identity Inference Attack with
Different Amount of Background Knowledge

We run this whole process for 10,000 times and Figure 2
shows the average value of the resulted possibilities. As shown
in Figure 2, the red line (1/86) is the baseline representing the
probability that the generated record is inferred as belonging
to the target individual without background knowledge. The
first blue point represents the average probability that the
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generated record is correctly referred given any one of the six
traits. Similarly, the second blue point represents the average
probability that the generated record is correctly referred given
any two different traits from all the six traits, and so on. We
can see that in general, the probability of correctly identifying
the target individual increases as the background knowledge
increases, while the inference probability given only one trait
is much larger than that of the situation without background
knowledge. The bar at each point shows the standard deviation
of the probability among 10,000 times of test.

Fig. 3. Probability Distribution of Identity Inference Attack
with Different Amount of Background Knowledge

Figure 3 shows the distribution of the inference probability
among the 10,000 times of identity inference test. As the
amount of background traits increases, the peaks of the process
count would be located at positions with larger identifying
probability. This indicates that in general, the more background
knowledge we have, the more probably that the target indi-
vidual’s record is correctly identified. Specifically, the highest
peak in the wave of |Ts| = 6 locates near line of P = 1, which
represents that if knowing all six traits, the attacker could
successfully identify the target individual with a confidence of
more than 90% in most times of test. On the other hand, the
multiple peaks in each line represent the different identifying
probabilities due to the different combinations of background
traits as well as the different possible genotype records being
randomly generated.

VI. RELATED WORK

Sharing de-identified genotype or genomic information
has become a common practice in human genetics. [5]
demonstrated end-to-end identification of individuals with only
public information and showed that full identities of per-
sonal genomes can be exposed via surname inference from
recreational genetic genealogy databases followed by Internet
searches. They considered a scenario in which the genomic
data are available with the target’s year of birth and state of
residency, two identifiers that are not protected by HIPAA.
From a different angle but along the same line, our study here
further shows that the re-identification of anonymized genotype
data still hold a real threat to normal individuals who are not
GWAS participants using published data.

Homer et al. in [1] developed a method to determine
whether a person with known genotypes at a number of mark-
ers was part of a sample from which only allele frequencies are

known. This study prompted concerns about the public dissem-
ination of genotype data and aggregate statistics from GWAS.
Consequently NIH regulated that the database of Genotypes
and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap) has
to be accessed by controlled access. An study in [6] proposed
two attacks based on statistics release in GWAS. The first
attack extended Homer’s attack by utilizing a more powerful
statistics (r2) which describes the correlation among different
SNPs, rather than the allele frequencies in Homer’s attack. The
other attack gave the way to recover the un-released SNPs
of participants by analyzing the r2 between pairwise SNPs.
All the above papers are focused on the privacy protection of
GWAS participants.

VII. CONCLUSIONS AND FUTURE WORK

In summary, we studied whether and to what extent GWAS
statistics can be exploited by an attacker to learn private
information of general population, not limited to GWAS par-
ticipants. We developed two potential attacks, trait inference
attack and identity inference attack. Both attacks exploit the
released GWAS statistics about the associations between SNP
genotypes and human traits. Our evaluations showed that the
proposed attacks have made re-identification of anonymized
genotype data a real threat. In our future work, we will
study how to extend our two-layered bayesian network to
capture trait-trait associations and/or SNP-SNP correlations.
We will study how to formalize various types of background
knowledge that an attacker may have in practice and evaluate
how well data perturbation and agglomeration techniques with
background knowledge can protect privacy when releasing
GWAS statistics. Our goal is to develop methods to enable
researchers to safely release aggregate GWAS data without
compromising the anonymity of both study participants and
non-participants.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers
for their valuable comments and suggestions. This work
was supported in part by U.S. National Institute of Health
(1R01GM103309).

REFERENCES

1. N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W.
Craig, “Resolving individuals contributing trace amounts of dna to
highly complex mixtures using high-density snp genotyping microar-
rays,” PLoS genetics, vol. 4, no. 8, p. e1000167, 2008.

2. The 1000 Genomes Project Consortium, “An integrated map of genetic
variation from 1,092 human genomes,” Nature, vol. 491, p. 1, 2012.

3. M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes
are predictable from digital records of human behavior,” Proceedings
of the National Academy of Sciences, vol. 110, no. 15, pp. 5802–5805,
2013.

4. L. Hindorff, J. MacArthur, J. Morales, H. Junkins, P. Hall, A. Klemm,
and T. Manolio. A catalog of published genome-wide association
studies. Available at: www.genome.gov/gwastudies.

5. M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich,
“Identifying personal genomes by surname inference,” Science, vol.
339, no. 6117, pp. 321–324, 2013.

6. R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou, “Learning your
identity and disease from research papers: information leaks in genome
wide association study,” in Proceedings of the 16th ACM conference on
Computer and communications security. ACM, 2009, pp. 534–544.

415




