
Differential Privacy Preservation for Deep Auto-Encoders:
An Application of Human Behavior Prediction

NhatHai Phan1, Yue Wang2, Xintao Wu3, Dejing Dou1

{haiphan,dou}@cs.uoregon.edu, ywang91@uncc.edu, xintaowu@uark.edu
1 University of Oregon, USA; 2 University of North Carolina at Charlotte, USA; 3 University of Arkansas, USA

Abstract

In recent years, deep learning has spread beyond both
academia and industry with many exciting real-world appli-
cations. The development of deep learning has presented ob-
vious privacy issues. However, there has been lack of sci-
entific study about privacy preservation in deep learning. In
this paper, we concentrate on the auto-encoder, a fundamen-
tal component in deep learning, and propose the deep private
auto-encoder (dPA). Our main idea is to enforce ε-differential
privacy by perturbing the objective functions of the traditional
deep auto-encoder, rather than its results. We apply the dPA to
human behavior prediction in a health social network. Theo-
retical analysis and thorough experimental evaluations show
that the dPA is highly effective and efficient, and it signifi-
cantly outperforms existing solutions.

Introduction

Deep learning is a timely and promising area of machine
learning research. In general, deep learning is about learning
multiple levels of representation and abstraction that help to
make sense of data such as images, sound, and text (Deng
and Yu 2014). With significant success in recent years, the
applications of deep learning are being expanded into other
fields such as social media (Yuan et al. 2013), social net-
work analysis (Perozzi, Al-Rfou, and Skiena 2014), bioin-
formatics (Chicco, Sadowski, and Baldi 2014), medicine
and healthcare (Song et al. 2014). This presents obvious is-
sues about protecting privacy in deep learning models when
they are built on users’ personal and highly sensitive data,
such as clinical records, user profiles, photo, etc. The present
research efforts lack sufficient deep learning techniques that
incorporate privacy concerns. Therefore, developing a pri-
vacy preserving deep learning model is an urgent demand.

Releasing sensitive results of statistical analysis and data
mining while protecting privacy has been studied in the past
few decades. One state-of-the-art approach to the problem
is ε-differential privacy (Dwork et al. 2006), which works
by injecting random noise into the released statistical results
computed from the underlying sensitive data, such that the
distribution of the noisy results is relatively insensitive to
any change of a single record in the original dataset. This en-
sures that the adversary cannot infer any information about

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

any particular record with high confidence (controlled by pa-
rameter ε), even if the adversary possesses all the remain-
ing tuples of the sensitive data. In this paper, we propose
to develop an ε-differential privacy preserving deep learn-
ing model. The structure of deep learning models, e.g., deep
auto-encoders (Bengio 2009), deep belief networks (Hinton,
Osindero, and Teh 2006), usually contains multiple layers of
neurons. At each layer, they use different objective functions
(e.g., cross-entropy error, energy based functions) and al-
gorithms (e.g., contrastive divergence (Hinton 2002), back-
propagation) to learn the optimal parameters for output tasks
such as classification and prediction. In addition, the designs
of deep learning models are varied and dependent on appli-
cation domains. It is difficult, therefore, to design a unified
ε-differential privacy solution that covers all deep learning
models. Deep auto-encoders (dAs) (Bengio 2009) are one of
the fundamental deep learning models which have been used
in many applications such as healthcare and medicine, natu-
ral language processing, etc. (Deng and Yu 2014). In this pa-
per, we aim at deriving an ε-differential privacy approach to
deep auto-encoders (dAs) for a binomial classification task.

There are several potential solutions for ε-differential pri-
vacy that target regression, which is similar to the data re-
construction and cross-entropy error functions in deep auto-
encoders (Zhang et al. 2012; Chaudhuri and Monteleoni
2008; Chaudhuri, Monteleoni, and Sarwate 2011; Lei 2011;
Smith 2011). The most pertinent algorithm that we can
adapt in our work is functional mechanism (FM) (Zhang
et al. 2012). The FM enforces ε-differential privacy by per-
turbing the objective function of the optimization problem,
e.g., logistic regression, rather than its results. By leverag-
ing the functional mechanism to perturb the objective func-
tions in deep auto-encoders so that the ε-differential privacy
is preserved, we propose a novel ε-differential Private Auto-
encoder (PA). First, the cross-entropy error functions of the
data reconstruction and softmax layer are approximated to
polynomial forms by using Taylor Expansion (Arfken 1985).
Second, we inject noise into these polynomial forms so that
the ε-differential privacy is satisfied in the training phases.
Third, in the PA, we add a normalization layer on top of the
hidden layer to protect the ε-differential privacy when stack-
ing multiple PAs. Multiple PAs can be stacked on each other
to produce a deep private auto-encoder (dPA). To evaluate
its performance, we apply the dPA model for human behav-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1309

Yazhe
附注
“Yazhe”设置的“Unmarked”

ior prediction in a real health social network. Conducted ex-
perimental results demonstrate that the dPA model achieves
accurate results with prediction power comparable to the un-
perturbed results, and it outperforms the existing solutions.

Preliminaries and Related Works

In this section, we briefly revisit the differential privacy
definition, Functional Mechanism (Zhang et al. 2012),
and formally introduce the deep auto-encoder. Let D
be a database that contains n tuples t1, t2, . . . , tn and
d+1 attributes X1, X2, . . . , Xd, Y . For each tuple ti =
(xi1, xi2, . . . , xid, yi), we assume without loss of generality√∑d

j=1 x
2
ij ≤ 1 where xij ≥ 0, yi follows a binomial dis-

tribution. Our objective is to construct a deep auto-encoder
ρ from D that (i) takes xi = (xi1, xi2, . . . , xid) as input and
(ii) outputs a prediction of yi that is as accurate as possi-
ble. The model function ρ contains a model parameter vec-
tor ω. To evaluate whether ω leads to an accurate model,
a cost function fD(ω) is often used to measure the differ-
ence between the original and predicted values of yi. As the
released model parameter ω may disclose sensitive informa-
tion of D, to protect the privacy, we require that the model
training should be performed with an algorithm which satis-
fies ε-differential privacy.

Differential Privacy. Differential privacy research has
been significantly studied from the theoretical perspec-
tive, e.g., (Chaudhuri and Monteleoni 2008; Kifer and
Machanavajjhala 2011). There are also extensive studies on
the applicability of enforcing differential privacy in some
particular analysis tasks, e.g., collaborative recommendation
(McSherry and Mironov 2009), logistic regression (Chaud-
huri and Monteleoni 2008), publishing contingency tables
(Xiao, Wang, and Gehrke 2010), and spectral graph analysis
(Wang, Wu, and Wu 2013) in social network analysis. The
mechanisms of achieving differential privacy mainly include
the classic approach of adding Laplacian noise (Dwork et
al. 2006), the exponential mechanism (McSherry and Talwar
2007), and the functional perturbation approach (Chaudhuri
and Monteleoni 2008).
Definition 1 (ε-Different Privacy (Dwork et al. 2006)). A
randomized algorithm A fulfills ε-differential privacy, iff for
any two databases D and D′ differing at most one tuple, and
for any output O of A, we have:

Pr(A(D) = O) ≤ eεPr(A(D′) = O) (1)

The privacy budget ε controls the amount by which the
distributions induced by two neighboring data sets may dif-
fer. Smaller values of ε enforce a stronger privacy guarantee
of A. A general method for computing an approximation to
any function f (on D) while preserving ε-differential pri-
vacy is the Laplace mechanism (Dwork et al. 2006), where
the output of f is a vector of real numbers. In particular, the
mechanism exploits the global sensitivity of f over any two
neighboring data sets (differing at most one record), which
is denoted as Sf (D). Given Sf (D), the Laplace mechanism
ensures ε-differential privacy by injecting noise η into each

value in the output of f(D) where η is drawn i.i.d. from
Laplace distribution with zero mean and scale Sf (D)/ε. In
(Shokri and Shmatikov 2015), Shokri et al. proposed a dis-
tributed training method to preserve privacy in neural net-
works. They extended their method to preserve differential
privacy for distributed deep neural networks. Their method
aims at preserving epsilon-differential privacy for each train-
ing epoch of each participant. Even their method is reason-
able given the context of distributed deep neural networks;
their approach may consume too much privacy budget to en-
sure model accuracy when the number of training epochs,
the number of participants, and the number of shared pa-
rameters are large.

Functional Mechanism Revisited. Functional mecha-
nism (Zhang et al. 2012) is an extension of the Laplace
mechanism. It achieves ε-differential privacy by perturb-
ing the objective function fD(ω) and then releasing the
model parameter ω that minimizes the perturbed objec-
tive function fD(ω) instead of the original one. The func-
tional mechanism exploits the polynomial representation of
fD(ω). The model parameter ω is a vector that contains d
values ω1, . . . , ωd. Let φ(ω) denote a product of ω1, . . . , ωd,
namely, φ(ω) = ωc1

1 · ωc2
2 · · · ωcd

d for some c1, . . . , cd ∈ N.
Let Φj(j ∈ N) denote the set of all products of ω1, . . . , ωd

with degree j, i.e., Φj =
{
ωc1
1 · ωc2

2 · · · ωcd
d

∣∣∣∑d
l=1 cl =

j
}

. By the Stone-Weierstrass Theorem, any continuous and
differentiable f(ti, ω) can always be written as a polyno-
mial of ω1, . . . , ωd, for some J ∈ [0,∞], i.e., f(ti, ω) =∑J

j=0

∑
φ∈Φj

λφtiφ(ω) where λφti ∈ R denotes the coeffi-
cient of φ(ω) in the polynomial.

For instance, the polynomial expression of the loss func-
tion in the linear regression is as follows: f(xi, ω) = (yi −
xT
i ω)

2 = y2i −∑d
j=1(2yixij)ωj +

∑
1≤j,l≤d(xijxil)ωjωl.

We can see that it only involves monomials in Φ0 =
{1},Φ1 = {ω1, . . . , ωd}, and Φ2 = {ωiωj

∣∣i, j ∈ [1, d]}.
Each φ(ω) has its own coefficient, e.g., for ωj , its polyno-
mial coefficient λφti

= −2yixij . Similarly, fD(ω) can also
be expressed as a polynomial of ω1, . . . , ωd.

fD(ω) =
J∑

j=0

∑
φ∈Φj

∑
ti∈D

λφtiφ(ω) (2)

Lemma 1 (Zhang et al. 2012) Let D and D′ be any two
neighboring datasets. Let fD(ω) and fD′(ω) be the objec-
tive functions of regression analysis on D and D′, respec-
tively. The following inequality holds

Δ =
J∑

j=1

2∑
φ∈Φj

∥∥∥ ∑
ti∈D

λφti −
∑
t′i∈D′

λφt′i

∥∥∥
1

≤ 2max
t

J∑
j=1

∑
φ∈Φj

‖λφt‖1

where ti, t
′
i or t is an arbitrary tuple.

1310

To achieve ε-differential privacy, fD(ω) is perturbed by
injecting Laplace noise Lap(Δε) into its polynomial co-
efficients λφ, and then the model parameter ω is derived
to minimize the perturbed function fD(ω), where Δ =

2maxt
∑J

j=1

∑
φ∈Φj

‖λφt‖1, according to the Lemma 1.
When the polynomial form of an objective function (e.g.,

logistic regression) contains terms with unbounded degrees,
Zhang et al. (Zhang et al. 2012) developed an approximation
polynomial form based on Taylor Expansion (Arfken 1985).
For instance, given the cost function f(ti, ω) of regression
analysis, assume that there exist 2m functions f1, . . . , fm
and g1, . . . , gm such that f(ti, ω) =

∑∞
l=1 fl(gl(ti, ω)), and

each gl(ti, ω) is a polynomial function of ω, where m ∈ N

is the number of functions f and g. Given the above decom-
position of f(ti, ω), we can apply the Taylor Expansion (Ar-
fken 1985) on each fl(·) to obtain the following equation:

f̃(ti, ω) =
m∑
l=1

∞∑
R=0

f
(R)
l (zl)

R!

(
gl(ti, ω)− zl

)R
(3)

where each zl is a real number.
Thus, the objective function f(D,ω) can be written as a

polynomial function, i.e.,

f̃D(ω) =

|D|∑
i=1

m∑
l=1

∞∑
R=0

f
(R)
l (zl)

R!

(
gl(ti, ω)− zl

)R
(4)

Deep Auto-Encoders. The deep auto-encoder (Bengio
2009) is one of the fundamental models in deep learning
(Deng and Yu 2014). An auto-encoder has a layer of in-
put units, and a layer of data reconstruction units fully con-
nected to a layer of hidden units, but no connections within
a layer (Fig. 1a). An auto-encoder is trained to encode the
input in some representation xi = {xi1, . . . , xid} so that
the input can be reconstructed from that representation. The
auto-encoder prefers to minimize the negative log-likelihood
of the reconstruction, given the encoding x̃i,

RE(ti,W) = − logP (xi|x̃i,W)

= −
d∑

j=1

(
xij log x̃ij + (1− xij) log(1− x̃ij)

)
(5)

where W is a weight matrix (i.e., from now on W will be
used to denote the parameters instead of ω),

x̃ = σ(hW) , h = σ(WTx) (6)

σ(·) is the sigmoid function. The loss function on the whole
dataset D is the summation over all the data points x:

RE(D,W) =

|D|∑
i=1

RE(xi,W) =

|D|∑
i=1

d∑
j=1

[

xij log(1 + e−Wjhi) + (1− xij) log(1 + eWjhi)
]

(7)

In the following, we blur the distinction between xi and
ti, which means ti indicates the set of attributes in xi. ti
and xi will be used interchangeably. We can stack multiple

Algorithm 1: Pseudo Code of a dPA model

1) Derive polynomial approximation of data reconstruction
function RE(D,W) (Eq. 7), denoted as ̂RE(D,W)

2) The function ̂RE(D,W) is perturbed by using functional
mechanism (FM) (Zhang et al. 2012), the perturbed function
is denoted as RE(D,W)

3) Compute W = argminW RE(D,W)
4) Private Auto-encoder (PA) stacking
5) Derive and perturb the polynomial approximation of
cross-entropy error C(θ) (Eq. 8), the perturbed function is
denoted as C(θ)

6) Compute θ = argminθ C(θ); Return θ

auto-encoders to produce a deep auto-encoder. On top of the
deep auto-encoder, we add an output layer which includes a
single binomial variable to predict Y . The output variable ŷ
is fully linked to the hidden variables of the highest hidden
layer, denoted h(k), by weighted connections W(k), where
k is the number of hidden layers in the deep auto-encoder.
We use the logistic function as an activation function of ŷ,
i.e., ŷ = σ(W(k)h(k)). A loss function to appropriately deal
with the binomial problem is cross-entropy error. Let YT

be a set of labeled data points used to train the model, the
cross-entropy error function is given by

C(YT , θ) = −
|YT |∑
i=1

(
yi log ŷi + (1− yi) log(1− ŷi)

)
(8)

We can use the layer-wise unsupervised training algo-
rithm (Bengio et al. 2007) and back-propagation to train
deep auto-encoders.

Deep Private Auto-Encoder (dPA)

In this section, we formally present our dPA model, a deep
auto-encoder model under ε-differential privacy. Our algo-
rithm to construct the dPA model includes six main steps
(Algorithm 1). We leverage the functional mechanism to en-
force ε-differential privacy in our dPA model. Therefore, in
the first step (Algorithm 1), we derive a polynomial approx-
imation of data reconstruction function RE(D,W) (Eq. 7).
The polynomial approximation is denoted as R̂E(D,W).
This is a non-trivial task due to the following key chal-
lenges and requirements: 1) The data reconstruction function
is complicated (compared with linear or logistic regression
analysis); and 2) The error of approximation methods must
be bounded and independent of the data size |D|. The sec-
ond requirement guarantees the potential to use unlabeled
data in a dPA model. As shown in the next sections, our ap-
proximation method theoretically satisfies this requirement.

In the second step, the functional mechanism is used to
perturb the approximation function R̂E(D,W), the per-
turbed function is denoted as RE(D,W). In this step, we
introduce a new result of global sensitivity computation for
auto-encoders. In the third step, we train the model to ob-
tain the optimal perturbed parameters W by using gradient
descent. That results in private auto-encoders (PAs). In the

1311

fourth step, we stack private auto-encoders (PAs) to con-
struct the deep private auto-encoders (dPAs). Before each
stacking operation, we introduce a normalization layer, de-
noted as h (Fig. 1b), which guarantees all the data assump-
tions and ε-differential privacy will be satisfied when train-
ing the next hidden layer. The normalization layer is placed
on top of each private auto-encoder. In the fifth step, we in-
troduce new results in deriving and perturbing (i.e., by using
functional mechanism) the polynomial approximation of the
cross-entropy error C(θ) (Eq. 8) in the softmax layer for pre-
diction tasks. The perturbed function is denoted as C(θ). At
the sixth step, back-propagation algorithm is used to fine-
tune all the parameters in the deep private auto-encoders.

In our framework, ε-differential privacy is preserved in
our dPA model, since it is enforced at every layer and train-
ing step. Let us first derive the polynomial approximation
form of RE(D,W), denoted R̂E(D,W), as follows.

Polynomial Approximation. To explain how we apply
the Taylor Expansion, and how Equations 3 and 4 are re-
lated to RE(D,W), recall the loss function shown in Eq. 7.
∀j ∈ {1, . . . , d}, let f1j , f2j , g1j , and g2j be four functions
defined as follows:

g1j(ti,Wj) = Wjhi; g2j(ti,Wj) = Wjhi; f1j(zj) =

xij log(1 + e−zj); f2j(zj) = (1− xij) log(1 + ezj) (9)

Then, we have

RE(ti,W) =

d∑
j=1

(
f1j

(
g1j(ti,Wj)

)
+ f2j

(
g2j(ti,Wj)

))

By Equations 3 and 4, we have: R̃E(D,W) =

=

|D|∑
i=1

d∑
j=1

2∑
l=1

∞∑
R=0

f
(R)
lj (zlj)

R!

(
glj(ti,Wj)− zlj

)R

where each zlj is a real number. By setting zlj = 0, the
above equation can be simplified as:

R̃E(D,W) =

|D|∑
i=1

d∑
j=1

2∑
l=1

∞∑
R=0

f
(R)
lj (0)

R!

(
Wjhi

)R
(10)

There are two complications in Eq. 10 that prevent us
from applying it for private data reconstruction analysis.
First, the equation involves an infinite summation. Second,
the term f

(R)
lj (0) involved in the equation does not have a

closed form solution. We address these two issues by pre-
senting an approximation approach that reduces the degree
of the summation. Our approximation approach works by
truncating the Taylor series in Eq. 10 to remove all poly-
nomial terms with order larger than 2. This leads to a new
objective function with low order polynomials as follows:

R̂E(D,W) =

|D|∑
i=1

d∑
j=1

(2∑
l=1

f
(0)
lj (0)

+
(2∑

l=1

f
(1)
lj (0)

)
Wjhi +

(2∑
l=1

f
(2)
lj (0)

2!

)
(Wjhi)

2
)

(11)

(a) Auto-encoder (b) PA model (c) dPA model

Figure 1: Examples of Auto-encoder, Private Auto-encoder,
Deep Private Auto-encoder.

Perturbation of Objective Functions. In this section,
we employ the functional mechanism to perturb the ob-
jective function R̂E(D,W) (i.e., in Eq. 11) by injecting
Laplace noise into its polynomial coefficients. The perturbed
function is denoted as RE(D,W). Then we derive the
model parameter W that minimizes the perturbed function
RE(D,W). First of all, we need to explore the sensitiv-
ity, denoted as Δ, of R̂E on D. In Eq. 11,

∑2
l=1 f

(0)
lj (0),∑2

l=1 f
(1)
lj (0), and

∑2
l=1

f
(2)
lj (0)

2! essentially are the polyno-

mial coefficients of the function R̂E given the database D.
To be concise, we denote {λ(0)

jti
, λ

(1)
jti

, λ
(2)
jti

} as a set of the

coefficients where ti ∈ D, λ(0)
jti

=
∑2

l=1 f
(0)
lj (0), λ(1)

jti
=∑2

l=1 f
(1)
lj (0), and λ

(2)
jti

=
∑2

l=1

f
(2)
lj (0)

2! . We are now ready
to state the following lemma.
Lemma 2 Let D and D′ be any two neighboring databases.
Let R̂E(D,W) and R̂E(D′,W) be the objective func-
tions of auto-encoder learning on D and D′ respectively,
then the global sensitivity of R̂E over any two neighboring
databases is as follows:

Δ = 2max
t

d∑
j=1

2∑
R=0

‖λ(R)
jt ‖ ≤ d(b+

1

4
b2) (12)

where b is the number of hidden variables.
We leave the detailed proof of Lemma 2 in the Ap-

pendix. We use gradient descent to train the perturbed model
RE(D,W).

Stacking Private Auto-Encoders. We have presented Pri-
vate Auto-Encoders (PAs), the ε-differential privacy preserv-
ing algorithm for auto-encoders. To construct a deep Private
Auto-Encoder (dPA) in which ε-differential privacy is sat-
isfied, we need to stack multiple PAs on top of each other.
The hidden units of the lower layer will be considered as the
input of the next PA (Fig. 1). To guarantee that this input to

the next PA satisfies our assumption (i.e.,
√∑b

j=1 h
2
ij ≤ 1

may not hold), we add a normalization layer, denoted as h,
on top of the PA. Each variable hij can be directly computed
from the hij as follows:

hij =
hij − γj

(ϕj − γj) ·
√
b

(13)

1312

where γj and ϕj denote the minimum and maximum val-
ues in the domain of Hj = {h1j , . . . , h|D|j}. Now we have√∑b

j=1 h
2
ij ≤ 1. On top of the dPA model, we add a soft-

max layer for either classification or prediction. To guaran-
tee that privacy is preserved at every layer, we need to de-
velop an ε-differential privacy preserving softmax layer.

Perturbation Softmax Layer. We focus on a binomial
prediction problem for the softmax layer. This layer con-
tains a single binomial variable ŷ to predict Y (Fig. 1c).
A loss function to appropriately deal with this task is the
cross-entropy error, which is given in Eq. 8. We can preserve
the ε-differential privacy for the softmax layer by deriving a
polynomial approximation of the cross-entropy error func-
tion, which will then be perturbed by using the functional
mechanism. Function C(YT , θ) in Eq. 8 can be rewritten as

C(YT , θ) = −
|YT |∑
i=1

(
yi log(1 + e−W(k)hi(k))

+ (1− yi) log(1 + eW(k)hi(k))
)

where W(k) and hi(k) are the states of weights W and hid-
den variables h at the k-th normalization layer, the hi(k) is
derived from the tuple ti by aggregating the tuple ti through
the structure of the dPA (Fig. 1b). In addition, the four func-
tions in Eq. 9 become:

g1(ti,W(k)) = W(k)hi(k) , g2(ti,W(k)) = W(k)hi(k)

f1(z) = yi log(1 + e−z) , f2(z) = (1− yi) log(1 + ez)

The polynomial approximation of C(YT , θ) is as follows:

Ĉ(YT , θ) =

|YT |∑
i=1

2∑
l=1

2∑
R=0

f
(R)
l (0)

R!

(
W(k)hi(k)

)R
(14)

The global sensitivity of the function of Ĉ(YT , θ) over YT

is given in the following lemma.

Lemma 3 Let YT and Y ′
T be any two neighboring sets of

labeled data points. Let Ĉ(YT , θ) and Ĉ(Y ′
T , θ) be the ob-

jective functions of auto-encoder learning on YT and Y ′
T re-

spectively, then the global sensitivity of Ĉ over YT is as:

ΔC = |h(k)|+ 1

4
|h(k)|2 (15)

where |h(k)| is the number of hidden variables in h(k).

We leave the proof of Lemma 3 to the Appendix. After
computing the sensitivity ΔC , functional mechanism is used
to achieve the differential privacy for the objective function
Ĉ(YT , θ). The perturbed function is denoted as C(YT , θ).
The back-propagation algorithm is used to train all the pa-
rameters in the deep Private Auto-Encoders (dPAs) that aim
at optimizing the function C(YT , θ).

Approximation Error Bounds. The following lemma
shows the result of how much error our approximation ap-
proaches, R̂E(D,W) (Eq. 11) and Ĉ(YT , θ) (Eq. 14), incur.
The error only depends on the structure of the function and
the number of attributes of the dataset. In addition, the aver-
age error of the approximations is always bounded.

Lemma 4 Given four polynomial functions R̃E(D,W),
R̂E(D,W), C̃(YT , θ), and Ĉ(YT , θ), the average error of
the approximations is always bounded as follows:

|R̃E(D, Ŵ)− R̃E(D, W̃)| ≤ e2 + 2e− 1

e(1 + e)2
× d (16)

|C̃(YT , θ̂)− C̃(YT , θ̃)| ≤ e2 + 2e− 1

e(1 + e)2
(17)

where W̃ = argminW R̃E(D,W), Ŵ =

argminW R̂E(D,W), θ̃ = argminθ C̃(YT , θ), and
θ̂ = argminθ Ĉ(YT , θ).

We leave the detailed proof of Lemma 4 to the Appendix.
Lemma 4 shows that the error of the approximation of the
data reconstruction in an auto-encoder is a product of a small
constant and the number of attributes d (Eq. 16). It is rea-
sonable, since the more attributes need to be reconstructed,
the more errors are injected into the results. The error is
completely independent of the number of tuples or data in-
stances. This sufficiently guarantees that our approximation
of the auto-encoder can be applied in large datasets. In the
experiment section, we will show that our approximation
approach leads to accurate results. In addition, the error of
the approximation of cross-entropy error function is a small
constant. Therefore, the error is independent of the number
of labeled data points in this supervised training step.

Experiments

To validate the proposed dPA model, we have developed a
dPA-based human behavior prediction model (dPAH) on a
real health social network. Our starting observation is that
a human behavior is the outcome of behavior determinants
such as self-motivation, social influences, and environmental
events. This observation is rooted in human agency in social
cognitive theory (Bandura 1989). In the dPAH model, these
human behavior determinants are integrated together.

Our Health Social Network Data were collected from
Oct 2010 to Aug 2011 as a collaboration between Peace-
Health Laboratories, SK Telecom Americas, and the Univer-
sity of Oregon to record daily physical activities, social ac-
tivities (text messages, competitions, etc.), biomarkers, and
biometric measures (cholesterol, BMI, etc.) for a group of
254 overweight and obese individuals. Physical activities,
including information about the number of walking and run-
ning steps, were reported via a mobile device carried by
each user. All users enrolled in an online social network,
allowing them to friend and communicate with each other.
Users’ biomarkers and biometric measures were recorded
via daily/weekly/monthly medical tests performed at home
individually or at our laboratories. In total, we consider three
groups of attributes: 1) Behaviors: #joining competitions,

1313

(a) Weekly Dataset (b) Daily Dataset

Figure 2: Prediction accuracy vs. dataset cardinality.

#exercising days, #goals set, #goals achieved,
∑

(distances),
avg(speeds); 2) #Inbox Messages: Encouragement, Fitness,
Followup, Competition, Games, Personal, Study protocol,
Progress report, Technique, Social network, Meetups, Goal,
Wellness meter, Feedback, Heckling, Explanation, Invita-
tion, Notice, Technical fitness, Physical; and 3) Biomarkers
and Biometric Measures: Wellness Score, BMI, BMI slope,
Wellness Score slope.

dPA-based Human Behavior Prediction (dPAH).
Given a tuple ti, xi1, . . . , xid are the personal attributes and
yi is a binomial parameter which indicates whether a user in-
creases or decreases his/her exercises. To describe the dPAH
model, we adjust the notations xi1 and yi a little bit to denote
the temporal dimension, and our social network information.
Specifically, xut = {x1ut, . . . , xdut} is used to denote the d
attributes of user u at time point t. Meanwhile, yut is used
to denote the status of the user u at time point t. yut = 1 de-
notes u increases exercises at time t, otherwise yut = 0. The
human behavior prediction task is to predict the statuses of
all the users in the next time point t + 1 given M past time
points t−M+ 1, . . . , t.

Given a user u, to model self-motivation and social influ-
ences, we add an aggregation of his/her past attributes and
the effects from his/her friends into the activation function of
the hidden units at the current time t. The hidden variables
h at time t now become
ht = σ(WT

1 xut + âut) where âut =

= {
N∑
k=1

AT
e,t−kxu,t−k

∣∣1 ≤ e ≤ b}+ ηu
|Fu|

∑
v∈Fu

ψt(v, u)

In the above Equation, âut includes a set of dynamic bi-
ases for each hidden unit in ht, i.e., |ht| = |âut|. In addition,
AT

e,t−k is a matrix of weight which connects xu,t−k with the
e-th hidden variable in ht. ψt(v, u) is the probability that v
influences u on physical activity at time t. ψt(v, u) is derived
from the CPP model (Phan et al. 2014) which is an efficient
social influence model in health social networks. Fu is a set
of friends of u in the social network. ηu is a parameter which
presents the ability to observe the explicit social influences
from neighboring users of user u. N is the number of time
points in the past, i.e., N < M. In essence, the first ag-
gregation term is the effect of user u’s past attributes on the
current attributes. The second aggregation term captures the
effect of social influences from neighboring users on user
u. The environmental events (i.e., #competitions, #meet-up

(a) Weekly Dataset (b) Daily Dataset

Figure 3: Prediction accuracy vs. privacy budget ε.

events) are included in personal attributes. Thus, the effect
of environmental events is well embedded into the model.

The parameters and input of our dPAH model are W =

{W1, A, ηu} and x = {xut,∪kxu,t−k,
∑

v∈Fu
ψt(v,u)

|Fu| }. The
model includes two PAs and a softmax layer for the hu-
man behavior prediction task. The model has been trained
on two granular levels of our health social network which
are daily and weekly datasets. Both datasets contain 30 at-
tributes, 254 users, 2,766 messages, 1,383 friend connec-
tions, 11,458 competitions, etc. In addition, the daily dataset
contains 300 time points, while the weekly dataset contains
48 time points. The number of hidden units and the number
of previous time intervals N are set to 200 and 3, respec-
tively. All the learning rates are set to 10−3.

Competitive Models. We compare the proposed dPAH
model with three types of models. 1) Deep learning models
for human behavior prediction. The CRBM (Taylor, Hin-
ton, and Roweis 2006) and SctRBM (Li et al. 2014; Phan
et al. 2015) are competitive models. None of these models
enforces ε-differential privacy. 2) Deep Auto-Encoder (dA)
and Truncated Deep Auto-Encoder (TdA). dA and TdA are
two algorithms derived from our analysis in Section 4. They
perform analysis but do not enforce ε-differential privacy.
dA directly outputs the model parameters that minimize
the objective functions, and TdA returns the parameters ob-
tained from approximate objective functions with truncated
polynomial terms. 3) Methods for regression analysis un-
der ε-differential privacy. This experimental evaluation in-
cludes 3 regression analysis approaches which are under ε-
differential privacy, namely, Functional Mechanism (FM)
(Zhang et al. 2012), DPME (Lei 2011), and Filter-Priority
(FP) (Cormode 2011). FM and DPME are the state-of-the-
art methods for regression analysis under ε-differential pri-
vacy, while FP is an ε-differentially private technique for
generating synthetic data that can also be used for regression
tasks. For FM, DPME and FP, we use the implementations
provided by their respective authors, and we set all internal
parameters to their recommended values.

Accuracy vs. Dataset Cardinality. Fig. 2 shows the pre-
diction accuracy of each algorithm as a function of the
dataset cardinality. In this experiment, we vary the size of
M, which also can be considered as the sampling rate of the
dataset. ε is 1.0 in this experiment. In both datasets, there is
a gap between the prediction accuracy of dPAH and that of
dA and Truncated one TdA, but the gap gets smaller rapidly

1314

with the increase of dataset cardinality. In addition, the per-
formance of FM, FP, and DPME improves with the dataset
cardinality, which is consistent with the theoretical results in
(Zhang et al. 2012; Lei 2011; Cormode 2011). Nevertheless,
even when we use all tuples in the dataset, the accuracies of
FM, FP, and DPME are still lower than that of dPAH, dA,
and TdA. With very small sampling rate, the performance of
the dPAH model is slightly lower than the SctRBM, which
is a non-privacy-enforcing deep learning model for human
behavior prediction. However, the dPAH significantly is bet-
ter than the SctRBM when the sampling rate goes just a bit
higher, i.e., > 0.3. This is a significant result, since 0.3 is a
small sampling rate.

Accuracy vs. Privacy Budget. Fig. 3 plots the prediction
accuracy of each model as a function of the privacy budget ε.
The prediction accuracies of dA, TdA, CRBM, and SctRBM
remain unchanged for all ε. This is because none of them
enforces ε-differential privacy. Since a smaller ε requires a
larger amount of noise to be injected, the other four models
incur higher inaccurate prediction results when ε decreases.
dPAH outperforms FM, FP, and DPME in all cases. In addi-
tion, it is relatively robust against the change of ε. In fact, the
dPAH model is competitive even with privacy non-enforcing
models such as CRBM and SctRBM.

Conclusions and Future Works

We have developed an approach for differentially private
deep auto-encoders. Our approach conducts both sensitivity
analysis and noise insertion on the data reconstruction and
the cross-entropy error objective functions. The proposed
dPA model achieves more accurate prediction results, when
the objective functions can be represented as finite polyno-
mials. Our experiments in an application of human behavior
prediction in real health social networks validate our theo-
retical results, and demonstrate the effectiveness of our ap-
proach. Our work can be extended on the following direc-
tions. First, our current mechanism has the potential to be
extended to different deep learning models; since it can be
applied to each layer, and stacked. Second, we plan to study
whether there may exist alternative analytical tools which
can be used to better approximate the objective functions.
Third, it is worthy to study how we might be able to extract
private information from deep neural networks.

Acknowledgment. This work is supported by the NIH
grant R01GM103309 to the SMASH project. Wu is also
supported by NSF grant 1502273 and 1523115. Dou is also
supported by NSF grant 1118050. We thank Xiao Xiao and
Rebeca Sacks for their contributions.

References

Apostol, T. 1967. Calculus. John Wiley & Sons.
Arfken, G. 1985. In Mathematical Methods for Physicists
(Third Edition). Academic Press.
Bandura, A. 1989. Human agency in social cognitive theory.
The American Psychologist.

Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H.; Mon-
treal, U. D.; and Quebec, M. 2007. Greedy layer-wise train-
ing of deep networks. In NIPS.
Bengio, Y. 2009. Learning deep architectures for ai. Found.
Trends Mach. Learn. 2(1):1–127.
Chaudhuri, K., and Monteleoni, C. 2008. Privacy-preserving
logistic regression. In NIPS’08, 289–296.
Chaudhuri, K.; Monteleoni, C.; and Sarwate, A. D. 2011.
Differentially private empirical risk minimization. J. Mach.
Learn. Res. 12.
Chicco, D.; Sadowski, P.; and Baldi, P. 2014. Deep autoen-
coder neural networks for gene ontology annotation predic-
tions. In ACM BCB’14, 533–540.
Cormode, G. 2011. Personal privacy vs population privacy:
learning to attack anonymization. In KDD’11, 1253–1261.
Deng, L., and Yu, D. 2014. Deep learning: Methods and
applications. Technical Report MSR-TR-2014-21.
Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006.
Calibrating noise to sensitivity in private data analysis. The-
ory of Cryptography 265–284.
Hinton, G.; Osindero, S.; and Teh, Y.-W. 2006. A fast
learning algorithm for deep belief nets. Neural Comput.
18(7):1527–1554.
Hinton, G. E. 2002. Training products of experts by mini-
mizing contrastive divergence. Neural Comput. 14(8).
Kifer, D., and Machanavajjhala, A. 2011. No free lunch in
data privacy. In SIGMOD’11, 193–204.
Lei, J. 2011. Differentially private m-estimators. In NIPS,
361–369.
Li, X.; Du, N.; Li, H.; Li, K.; Gao, J.; and Zhang, A. 2014.
A deep learning approach to link prediction in dynamic net-
works. In SIAM’14, 289–297.
McSherry, F., and Mironov, I. 2009. Differentially Private
Recommender Systems. In KDD’09. ACM.
McSherry, F., and Talwar, K. 2007. Mechanism design via
differential privacy. In FOCS ’07, 94–103.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD’14, 701–
710.
Phan, N.; Dou, D.; Xiao, X.; Piniewski, B.; and Kil, D. 2014.
Analysis of physical activity propagation in a health social
network. In CIKM’14, 1329–1338.
Phan, N.; Dou, D.; Piniewski, B.; and Kil, D. 2015. Social
restricted boltzmann machine: Human behavior prediction
in health social networks. In ASONAM’15, 424–431.
Shokri, R., and Shmatikov, V. 2015. Privacy-preserving
deep learning. In CCS’15, 1310–1321.
Smith, A. 2011. Privacy-preserving statistical estimation
with optimal convergence rates. In STOC’11, 813–822.
Song, Y.; Ni, D.; Zeng, Z.; He, L.; et al. 2014. Automatic
vaginal bacteria segmentation and classification based on su-
perpixel and deep learning. Journal of Medical Imaging and
Health Informatics 4(5):781–786.

1315

Taylor, G.; Hinton, G.; and Roweis, S. 2006. Modeling
human motion using binary latent variables. In NIPS’06,
1345–1352.
Wang, Y.; Wu, X.; and Wu, L. 2013. Differential privacy
preserving spectral graph analysis. In PAKDD (2), 329–340.
Xiao, X.; Wang, G.; and Gehrke, J. 2010. Differential pri-
vacy via wavelet transforms. In ICDE’10, 225–236.
Yuan, Z.; Sang, J.; Liu, Y.; and Xu, C. 2013. Latent feature
learning in social media network. In ACM MM’13, 253–262.
Zhang, J.; Zhang, Z.; Xiao, X.; Yang, Y.; and Winslett, M.
2012. Functional mechanism: regression analysis under dif-
ferential privacy. PVLDB 5(11):1364–1375.

Appendices

Proof of Lemma 2

Proof 1 Assume that D and D′ differ in the last tu-
ple. Let tn (t′n) be the last tuple in D (D′). Then,

Δ =
∑d

j=1

∑2
R=0

∥∥∥∑ti∈D λ
(R)
jti

− ∑
t′i∈D′ λ

(R)
jt′i

∥∥∥ =∑d
j=1

∑2
R=0

∥∥λ(R)
jtn

− λ
(R)
jt′n

∥∥. We can show that λ
(0)
jtn

=∑2
l=1 f

(0)
lj (0) = xnj log 2 + (1 − xnj) log 2 = log 2. Sim-

ilarly, we can show that λ(0)
jt′n

= log 2. As a result, λ(0)
jtn

=

λ
(0)
jt′n

. Therefore

Δ =

d∑
j=1

2∑
R=0

∥∥λ(R)
jtn

− λ
(R)
jt′n

∥∥ =

d∑
j=1

2∑
R=1

∥∥λ(R)
jtn

− λ
(R)
jt′n

∥∥

≤
d∑

j=1

2∑
R=1

(∥∥λ(R)
jtn

∥∥+
∥∥λ(R)

jt′n

∥∥) ≤ 2max
t

d∑
j=1

2∑
R=1

‖λ(R)
jt ‖

≤ 2max
t

[d∑
j=1

(
1

2
− xtj)

m∑
e=1

hte +

d∑
j=1

(1
8

∑
e,q

htehtq

)]

≤ 2(
1

2
d× b+

1

8
d× b2) = d(b+

1

4
b2)

where hte is the state of e-th hidden variable derived from
the tuple t, i.e., h = σ(WTx).

Proof of Lemma 3

Proof 2 By applying Lemma 2, we can compute the sen-
sitivity ΔC of Ĉ(YT , θ) on the set of labeled data points
YT as follows: ΔC ≤ 2maxt

[∑|h(k)|
j=1 (12 − yi) +

1
8

∑
e,q hte(k)htq(k)

] ≤ |h(k)|+ 1
4 |h(k)|2, where hte(k) is the

state of the e-th hidden variable at the k-th normalization
layer, and it is derived from the tuple t. |h(k)| is the number
of hidden variables in h(k).

Proof of Lemma 4

Proof 3 Let W̃ = argminW R̃E(D,W) and Ŵ =

argminW R̂E(D,W), U = maxW
(
R̃E(D,W) −

R̂E(D,W)
)

and S = minW
(
R̃E(D,W) − R̂E(D,W)

)
.

We have that U ≥ R̃E(D, Ŵ) − R̂E(D, Ŵ) and ∀W ∗ :

S ≤ R̃E(D,W ∗)− R̂E(D,W ∗). Therefore, we have

R̃E(D, Ŵ) − R̂E(D, Ŵ) − R̃E(D,W ∗) +

R̂E(D,W ∗) ≤ U − S ⇔ R̃E(D, Ŵ) − R̃E(D,W ∗) ≤
U − S +

(
R̂E(D, Ŵ)− R̂E(D,W ∗)

)
.

In addition, R̂E(D, Ŵ) − R̂E(D,W ∗) ≤ 0, so
R̃E(D, Ŵ) − R̃E(D,W ∗) ≤ U − S. If U ≥ 0 and S ≤ 0
then we have:

|R̃E(D, Ŵ)− R̃E(D,W ∗)| ≤ U − S (18)

Eq. 18 holds for every W ∗. Therefore, it still holds
for W̃ . Eq. 18 shows that the error incurred by trun-
cating the Taylor series approximate function depends
on the maximum and minimum values of R̃E(D,W) −
R̂E(D,W). To quantify the magnitude of the error, we
first rewrite R̃E(D,W) − R̂E(D,W) as: R̃E(D,W) −
R̂E(D,W) =

∑d
j=1

(
R̃E(D,Wj) − R̂E(D,Wj)

)
=∑d

j=1

(∑|D|
i=1

∑2
l=1

∑∞
R=3

f
(R)
lj (zlj)

R!

(
glj(ti,Wj)− zlj

)R)
.

To derive the minimum and maximum values of the
function above, we look into the remainder of Taylor
Expansion for each j. Let zj ∈ [zlj − 1, zlj + 1].
According to the well-known result (Apostol 1967),
1

|D|
(
R̃E(D,Wj) − R̂E(D,Wj)

)
must be in the interval[∑

l

minzj
f
(3)
lj (zj)(zj−zlj)

3

6 ,
∑

l

maxzj
f
(3)
lj (zj)(zj−zlj)

3

6

]
.

If
∑

l

maxzj
f
(3)
lj (zj)(zj−zlj)

3

6 ≥ 0 and∑
l

minzj
f
(3)
lj (zj)(zj−zlj)

3

6 ≤ 0, then we have
that | 1

|D|
(
R̃E(D,W) − R̂E(D,W)

)| ≤
∑d

j=1

∑
l

maxzj
f
(3)
lj (zj)(zj−zlj)

3−minzj
f
(3)
lj (zj)(zj−zlj)

3

6 .
This analysis applies to the case of an auto-encoder as
follows. First, for the functions f1j(zj) = xij log(1 + e−zj)
and f2j(zj) = (1 − xij) log(1 + ezj), we have

f
(3)
1j (zj) =

2xije
zj

(1+ezj)3
and f

(3)
2j (zj) = (1− xij)

e−zj (e−zj−1)

(1+e−zj)3
.

It can be verified that argminzj f
(3)
1j (zj) = −2e

(1+e)3 < 0,

argmaxzj f
(3)
1j (zj) = 2e

(1+e)3 > 0, argminzj f
(3)
2j (zj) =

1−e
e(1+e)3 < 0, and argmaxzj f

(3)
2j (zj) =

e(e−1)
(1+e)3 > 0. Thus,

the average error of the approximation is at most
|R̃E(D, Ŵ) − R̃E(D, W̃)| ≤

[(
2e

(1+e)3 − −2e
(1+e)3

)
+(e(e−1)

(1+e)3 − 1−e
e(1+e)3

)]× d = e2+2e−1
e(1+e)2 × d.

Therefore, Eq. 16 holds. Eq. 17 can be proved in the sim-
ilar way. The main difference is that there is only one output
variable which is ŷ in the function Ĉ(YT , θ). Meanwhile,
there are d output variables (i.e., |x̃| = d) in the data re-
construction function R̂E(D,W). Thus, by replacing the
functions R̃E(D,W) and R̂E(D,W) with C̃(YT , θ) and
Ĉ(YT , θ) in the proof of Eq. 16, we obtain that

|C̃(YT , θ̂)−C̃(YT , θ̃)| ≤
[(

2e
(1+e)3 − −2e

(1+e)3

)
+
(e(e−1)
(1+e)3 −

1−e
e(1+e)3

)]
= e2+2e−1

e(1+e)2 .

1316

